An end-to-end screen shooting resilient blind watermarking scheme for medical images

稳健性(进化) 计算机科学 数字水印 水印 人工智能 加密 计算机视觉 计算机安全 图像(数学) 生物化学 基因 化学
作者
Zongwei Tang,Xiuli Chai,Yang Lu,Sheng Wang,Yong Tan
出处
期刊:Journal of information security and applications [Elsevier]
卷期号:76: 103547-103547 被引量:10
标识
DOI:10.1016/j.jisa.2023.103547
摘要

The rapid progress in artificial intelligence and network communication has led to the development of advanced regional medical systems, revolutionizing the way hospitals and patients connect. However, the security of these systems is threatened by the potential breach of medical data, especially sensitive medical images. Existing watermarking schemes have focused on optimizing either imperceptibility or robustness, creating a fundamental trade-off between these two aspects that poses a significant challenge in the field. To address this challenge and ensure the confidentiality and integrity of medical data, this paper proposes an end-to-end screen shooting resistant blind watermarking scheme for medical images. The proposed method offers a robust and reliable solution for the secure transmission and storage of medical images, particularly in the face of screen shooting attacks. To enhance both security and imperceptibility, the scheme employs a novel encryption technique based on BCH codes, resulting in a trinary sequence for watermark images. These watermarks are then embedded in the spatial domain, effectively protecting against unauthorized access while preserving the integrity of the original image. To further enhance robustness, the method introduces a neural network structure specifically designed to resilient screen shooting attacks. By simulating the screen shooting process and incorporating various distortions, this network combines the strengths of residual networks and generative adversarial networks. Moreover, the proposed method introduces a novel loss function that exploits the unique characteristics of the image transformation domain, optimizing both imperceptibility and robustness. In the subsequent experiment, the watermarked images achieved satisfactory results with the highest PSNR and SSIM values reaching 62.563 dB and 0.9999, respectively. The proposed scheme provides an effective solution to protect the privacy and copyright of medical images, effectively addressing a critical security concern prevalent in regional healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ting完成签到,获得积分10
刚刚
微笑完成签到,获得积分10
刚刚
可爱的函函应助西宁阿采纳,获得30
1秒前
蓝莓松饼发布了新的文献求助10
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
高高发布了新的文献求助10
2秒前
一拳一个小欧阳完成签到 ,获得积分10
2秒前
明雨天地完成签到,获得积分10
2秒前
deathmask完成签到 ,获得积分10
2秒前
老实志泽完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
hata完成签到,获得积分10
3秒前
Pangsj完成签到,获得积分10
4秒前
4秒前
青蛙旅行完成签到 ,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
5秒前
小马甲应助mimi采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
雪白问兰应助科研通管家采纳,获得30
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
zzzzzz应助科研通管家采纳,获得20
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
sidegate应助科研通管家采纳,获得10
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
li完成签到,获得积分10
5秒前
5秒前
mlml完成签到,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672