An end-to-end screen shooting resilient blind watermarking scheme for medical images

稳健性(进化) 计算机科学 数字水印 水印 人工智能 加密 计算机视觉 计算机安全 图像(数学) 生物化学 化学 基因
作者
Zongwei Tang,Xiuli Chai,Yang Lu,Sheng Wang,Yong Tan
出处
期刊:Journal of information security and applications [Elsevier]
卷期号:76: 103547-103547 被引量:10
标识
DOI:10.1016/j.jisa.2023.103547
摘要

The rapid progress in artificial intelligence and network communication has led to the development of advanced regional medical systems, revolutionizing the way hospitals and patients connect. However, the security of these systems is threatened by the potential breach of medical data, especially sensitive medical images. Existing watermarking schemes have focused on optimizing either imperceptibility or robustness, creating a fundamental trade-off between these two aspects that poses a significant challenge in the field. To address this challenge and ensure the confidentiality and integrity of medical data, this paper proposes an end-to-end screen shooting resistant blind watermarking scheme for medical images. The proposed method offers a robust and reliable solution for the secure transmission and storage of medical images, particularly in the face of screen shooting attacks. To enhance both security and imperceptibility, the scheme employs a novel encryption technique based on BCH codes, resulting in a trinary sequence for watermark images. These watermarks are then embedded in the spatial domain, effectively protecting against unauthorized access while preserving the integrity of the original image. To further enhance robustness, the method introduces a neural network structure specifically designed to resilient screen shooting attacks. By simulating the screen shooting process and incorporating various distortions, this network combines the strengths of residual networks and generative adversarial networks. Moreover, the proposed method introduces a novel loss function that exploits the unique characteristics of the image transformation domain, optimizing both imperceptibility and robustness. In the subsequent experiment, the watermarked images achieved satisfactory results with the highest PSNR and SSIM values reaching 62.563 dB and 0.9999, respectively. The proposed scheme provides an effective solution to protect the privacy and copyright of medical images, effectively addressing a critical security concern prevalent in regional healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助木之尹采纳,获得30
刚刚
香蕉觅云应助鱼大仙采纳,获得10
刚刚
刘琪琪完成签到 ,获得积分10
1秒前
赘婿应助jiyihan采纳,获得10
2秒前
3秒前
4秒前
上官若男应助zyy0605采纳,获得10
6秒前
6秒前
7秒前
章鱼哥想毕业完成签到 ,获得积分10
7秒前
端庄代荷完成签到 ,获得积分10
8秒前
8秒前
LYchem应助寻123采纳,获得10
9秒前
Promise完成签到,获得积分10
9秒前
顺顺发布了新的文献求助10
9秒前
鱼大仙发布了新的文献求助10
10秒前
雪sung发布了新的文献求助10
11秒前
jiyihan发布了新的文献求助10
12秒前
永不言弃的lx完成签到,获得积分10
12秒前
13秒前
烟花应助闪闪冰夏采纳,获得10
14秒前
15秒前
15秒前
心态完成签到,获得积分10
16秒前
YBR完成签到 ,获得积分10
16秒前
17秒前
17秒前
哪有你好发布了新的文献求助10
17秒前
小马甲应助呆桃采纳,获得10
18秒前
没有昵称完成签到 ,获得积分10
18秒前
完美世界应助我爱乒乓球采纳,获得200
18秒前
朱莉莉发布了新的文献求助10
19秒前
华仔应助小木采纳,获得10
19秒前
mxx发布了新的文献求助10
20秒前
寻123完成签到,获得积分20
20秒前
20秒前
20秒前
脑洞疼应助讨厌鬼采纳,获得10
20秒前
knowledge完成签到,获得积分10
20秒前
Melon完成签到,获得积分10
21秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117099
求助须知:如何正确求助?哪些是违规求助? 2767036
关于积分的说明 7689541
捐赠科研通 2422396
什么是DOI,文献DOI怎么找? 1286206
科研通“疑难数据库(出版商)”最低求助积分说明 620271
版权声明 599837