亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism

平均绝对百分比误差 均方误差 水准点(测量) 计算机科学 期限(时间) 功率(物理) 人工智能 钥匙(锁) 皮尔逊积矩相关系数 能量(信号处理) 人工神经网络 数据挖掘 统计 数学 物理 计算机安全 大地测量学 量子力学 地理
作者
Anping Wan,Qing Chang,Khalil AL-Bukhaiti,Jiabo He
出处
期刊:Energy [Elsevier]
卷期号:282: 128274-128274 被引量:118
标识
DOI:10.1016/j.energy.2023.128274
摘要

This study proposes a new approach for short-term power load forecasting using a combination of convolutional neural networks (CNN), long short-term memory (LSTM), and attention mechanisms to address the issue of information loss due to excessively long input time series data. The objective is to enhance the accuracy of short-term power load prediction, which is crucial for efficient energy management. The study analyzes the relationship between the target load and the collected parameters, identifying the most influential factors using Pearson correlation coefficient analysis. A one-dimensional CNN layer is utilized to extract high-dimensional features from the input data, followed by an LSTM layer that captures temporal correlations within the historical sequences. Finally, an attention mechanism is introduced to optimize the weight of the LSTM output, enhance the influence of key information, and optimize the overall prediction model. The performance of the proposed model is evaluated using two benchmark models based on mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) metrics. The results show that the CNN-LSTM-A model outperforms the traditional LSTM model regarding power load prediction accuracy for two thermal power units, with an improvement of 7.3% and 5.7%, respectively, indicating superior performance. Therefore, this study demonstrates the effectiveness of the proposed CNN-LSTM-A model for short-term power load forecasting, which has potential applications in the energy industry. In conclusion, the proposed approach can improve the accuracy of power load forecasting, leading to more efficient energy management and cost savings. Additionally, the study highlights the importance of incorporating attention mechanisms into traditional LSTM models for power load forecasting, as it helps to optimize the weight of the LSTM output and improve the accuracy of the predictions. The proposed CNN-LSTM-A model can be potentially useful for energy companies and policymakers in making informed decisions regarding energy production and consumption. Overall, this study provides a valuable contribution to power load forecasting, and the proposed approach could be extended to other areas of time-series forecasting in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
SUN发布了新的文献求助10
2秒前
无聊的月饼完成签到 ,获得积分10
4秒前
hahahan完成签到 ,获得积分10
6秒前
左代灵发布了新的文献求助20
7秒前
8秒前
reegol发布了新的文献求助10
9秒前
Prime完成签到 ,获得积分10
10秒前
12秒前
DW发布了新的文献求助10
13秒前
刘子发布了新的文献求助10
16秒前
领导范儿应助Haiverxin采纳,获得10
17秒前
19秒前
任性大米完成签到,获得积分10
22秒前
tao完成签到 ,获得积分10
22秒前
领导范儿应助DW采纳,获得10
23秒前
刘子完成签到 ,获得积分10
32秒前
37秒前
小花小宝和阿飞完成签到 ,获得积分10
38秒前
朴素的小霸王完成签到 ,获得积分20
40秒前
财年发布了新的文献求助10
42秒前
CYC完成签到,获得积分10
45秒前
代扁扁发布了新的文献求助10
46秒前
努力发一区完成签到 ,获得积分10
47秒前
李爱国应助anna采纳,获得10
48秒前
HRZ完成签到 ,获得积分10
49秒前
reegol完成签到,获得积分10
51秒前
罗博超完成签到,获得积分10
51秒前
chaotianjiao完成签到 ,获得积分10
51秒前
52秒前
代扁扁完成签到 ,获得积分10
58秒前
阳光沛凝完成签到,获得积分20
1分钟前
Binbin完成签到 ,获得积分10
1分钟前
1分钟前
小吴同学发布了新的文献求助10
1分钟前
ycp完成签到,获得积分10
1分钟前
阿菜完成签到,获得积分10
1分钟前
1分钟前
ding应助畅快菠萝采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353435
求助须知:如何正确求助?哪些是违规求助? 2978016
关于积分的说明 8683528
捐赠科研通 2659372
什么是DOI,文献DOI怎么找? 1456201
科研通“疑难数据库(出版商)”最低求助积分说明 674297
邀请新用户注册赠送积分活动 665016