Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism

平均绝对百分比误差 均方误差 水准点(测量) 计算机科学 期限(时间) 功率(物理) 人工智能 钥匙(锁) 皮尔逊积矩相关系数 能量(信号处理) 人工神经网络 数据挖掘 统计 数学 物理 计算机安全 大地测量学 量子力学 地理
作者
Anping Wan,Qing Chang,Khalil AL-Bukhaiti,Jiabo He
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128274-128274 被引量:160
标识
DOI:10.1016/j.energy.2023.128274
摘要

This study proposes a new approach for short-term power load forecasting using a combination of convolutional neural networks (CNN), long short-term memory (LSTM), and attention mechanisms to address the issue of information loss due to excessively long input time series data. The objective is to enhance the accuracy of short-term power load prediction, which is crucial for efficient energy management. The study analyzes the relationship between the target load and the collected parameters, identifying the most influential factors using Pearson correlation coefficient analysis. A one-dimensional CNN layer is utilized to extract high-dimensional features from the input data, followed by an LSTM layer that captures temporal correlations within the historical sequences. Finally, an attention mechanism is introduced to optimize the weight of the LSTM output, enhance the influence of key information, and optimize the overall prediction model. The performance of the proposed model is evaluated using two benchmark models based on mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) metrics. The results show that the CNN-LSTM-A model outperforms the traditional LSTM model regarding power load prediction accuracy for two thermal power units, with an improvement of 7.3% and 5.7%, respectively, indicating superior performance. Therefore, this study demonstrates the effectiveness of the proposed CNN-LSTM-A model for short-term power load forecasting, which has potential applications in the energy industry. In conclusion, the proposed approach can improve the accuracy of power load forecasting, leading to more efficient energy management and cost savings. Additionally, the study highlights the importance of incorporating attention mechanisms into traditional LSTM models for power load forecasting, as it helps to optimize the weight of the LSTM output and improve the accuracy of the predictions. The proposed CNN-LSTM-A model can be potentially useful for energy companies and policymakers in making informed decisions regarding energy production and consumption. Overall, this study provides a valuable contribution to power load forecasting, and the proposed approach could be extended to other areas of time-series forecasting in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞灵安发布了新的文献求助30
刚刚
跳跃梦蕊发布了新的文献求助20
刚刚
sunflower完成签到,获得积分0
1秒前
LZ完成签到 ,获得积分10
1秒前
Lucas应助大大怪采纳,获得10
1秒前
PKX完成签到 ,获得积分10
2秒前
搜集达人应助张三采纳,获得10
2秒前
2秒前
酷波er应助万万不可能采纳,获得10
2秒前
LXL关闭了LXL文献求助
2秒前
眇鱼完成签到 ,获得积分10
3秒前
搜集达人应助MIDANN采纳,获得10
3秒前
CC完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
小杜完成签到,获得积分10
5秒前
直率的宛海完成签到,获得积分10
5秒前
kingwhitewing发布了新的文献求助10
5秒前
活泼身影发布了新的文献求助10
6秒前
香蕉觅云应助erhan7采纳,获得10
7秒前
用户5063899完成签到,获得积分10
7秒前
8秒前
飘逸鸵鸟发布了新的文献求助10
8秒前
fsky发布了新的文献求助10
8秒前
火星上黎云完成签到,获得积分10
8秒前
9秒前
9秒前
Spinnin完成签到,获得积分10
10秒前
华仔应助zdnn采纳,获得30
10秒前
bkagyin应助跳跃仙人掌采纳,获得10
11秒前
LL完成签到 ,获得积分10
11秒前
俟天晴完成签到,获得积分10
11秒前
11秒前
hhhhhhh完成签到,获得积分10
12秒前
苏silence发布了新的文献求助10
12秒前
知北完成签到,获得积分10
12秒前
as完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582