Identification of Sleep Phenotypes in COPD Using Machine Learning-Based Cluster Analysis

医学 慢性阻塞性肺病 鉴定(生物学) 表型 星团(航天器) 睡眠(系统调用) 人工智能 计算生物学 机器学习 内科学 遗传学 基因 计算机科学 计算机网络 植物 生物 操作系统
作者
Javad Razjouyan,Nicola A. Hanania,Sara Nowakowski,Ritwick Agrawal,Amir Sharafkhaneh
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:227: 107641-107641
标识
DOI:10.1016/j.rmed.2024.107641
摘要

Background Disturbed sleep in patients with COPD impact quality of life and predict adverse outcomes. Research Question To identify distinct phenotypic clusters of patients with COPD using objective sleep parameters and evaluate the associations between clusters and all-cause mortality to inform risk stratification. Study Design and Methods A longitudinal observational cohort study using nationwide Veterans Health Administration data of patients with COPD investigated for sleep disorders. Sleep parameters were extracted from polysomnography physician interpretation using a validated natural language processing algorithm. We performed cluster analysis using an unsupervised machine learning algorithm (K-means) and examined the association between clusters and mortality using Cox regression analysis, adjusted for potential confounders, and visualized with Kaplan-Meier estimates. Results Among 9,992 patients with COPD and a clinically indicated baseline polysomnogram, we identified five distinct clusters based on age, comorbidity burden and sleep parameters. Overall mortality increased from 9.4% to 42% and short-term mortality (< 5.3 years) ranged from 3.4% to 24.3% in Cluster 1 to 5. In Cluster 1 younger age, in 5 high comorbidity burden and in the other three clusters, total sleep time and sleep efficiency had significant associations with mortality. Interpretation We identified five distinct clinical clusters and highlighted the significant association between total sleep time and sleep efficiency on mortality. The identified clusters highlight the importance of objective sleep parameters in determining mortality risk and phenotypic characterization in this population. Disturbed sleep in patients with COPD impact quality of life and predict adverse outcomes. To identify distinct phenotypic clusters of patients with COPD using objective sleep parameters and evaluate the associations between clusters and all-cause mortality to inform risk stratification. A longitudinal observational cohort study using nationwide Veterans Health Administration data of patients with COPD investigated for sleep disorders. Sleep parameters were extracted from polysomnography physician interpretation using a validated natural language processing algorithm. We performed cluster analysis using an unsupervised machine learning algorithm (K-means) and examined the association between clusters and mortality using Cox regression analysis, adjusted for potential confounders, and visualized with Kaplan-Meier estimates. Among 9,992 patients with COPD and a clinically indicated baseline polysomnogram, we identified five distinct clusters based on age, comorbidity burden and sleep parameters. Overall mortality increased from 9.4% to 42% and short-term mortality (< 5.3 years) ranged from 3.4% to 24.3% in Cluster 1 to 5. In Cluster 1 younger age, in 5 high comorbidity burden and in the other three clusters, total sleep time and sleep efficiency had significant associations with mortality. We identified five distinct clinical clusters and highlighted the significant association between total sleep time and sleep efficiency on mortality. The identified clusters highlight the importance of objective sleep parameters in determining mortality risk and phenotypic characterization in this population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盛夏完成签到,获得积分10
1秒前
nam发布了新的文献求助10
2秒前
龙抬头完成签到,获得积分10
3秒前
ty完成签到,获得积分10
4秒前
wxnice发布了新的文献求助10
5秒前
5秒前
556644O完成签到,获得积分10
5秒前
威武冷雪完成签到,获得积分10
6秒前
foyefeng完成签到,获得积分10
7秒前
NorthWang完成签到,获得积分10
7秒前
cylee完成签到 ,获得积分10
9秒前
556644O发布了新的文献求助10
9秒前
玩命的无春完成签到 ,获得积分10
9秒前
11秒前
直率的灵安完成签到,获得积分10
12秒前
简单的丑完成签到 ,获得积分10
12秒前
CodeCraft应助Jim luo采纳,获得10
12秒前
12秒前
账户已注销应助liuguohua126采纳,获得30
13秒前
liyi2022完成签到,获得积分10
14秒前
杜兰特工队完成签到,获得积分10
15秒前
苦西迪发布了新的文献求助10
16秒前
科研铁人完成签到,获得积分10
16秒前
不吃芹菜完成签到,获得积分10
16秒前
白茶的雪完成签到,获得积分10
16秒前
支雨泽完成签到,获得积分10
16秒前
伊yan完成签到 ,获得积分10
17秒前
浅香千雪完成签到,获得积分10
18秒前
斯文败类应助飞快的绿采纳,获得10
18秒前
小菜鸡完成签到 ,获得积分10
18秒前
maxyer完成签到,获得积分10
19秒前
19秒前
Inicly完成签到 ,获得积分10
20秒前
黑包包大人完成签到,获得积分10
22秒前
jhcraul完成签到,获得积分10
23秒前
小丛雨完成签到,获得积分10
24秒前
wisdom完成签到,获得积分10
26秒前
26秒前
27秒前
善学以致用应助Jim luo采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068355
求助须知:如何正确求助?哪些是违规求助? 2722240
关于积分的说明 7476332
捐赠科研通 2369299
什么是DOI,文献DOI怎么找? 1256310
科研通“疑难数据库(出版商)”最低求助积分说明 609538
版权声明 596835