Identification of Sleep Phenotypes in COPD Using Machine Learning-Based Cluster Analysis

医学 慢性阻塞性肺病 鉴定(生物学) 表型 星团(航天器) 睡眠(系统调用) 人工智能 计算生物学 机器学习 内科学 遗传学 基因 计算机科学 计算机网络 植物 生物 操作系统
作者
Javad Razjouyan,Nicola A. Hanania,Sara Nowakowski,Ritwick Agrawal,Amir Sharafkhaneh
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:227: 107641-107641
标识
DOI:10.1016/j.rmed.2024.107641
摘要

Background Disturbed sleep in patients with COPD impact quality of life and predict adverse outcomes. Research Question To identify distinct phenotypic clusters of patients with COPD using objective sleep parameters and evaluate the associations between clusters and all-cause mortality to inform risk stratification. Study Design and Methods A longitudinal observational cohort study using nationwide Veterans Health Administration data of patients with COPD investigated for sleep disorders. Sleep parameters were extracted from polysomnography physician interpretation using a validated natural language processing algorithm. We performed cluster analysis using an unsupervised machine learning algorithm (K-means) and examined the association between clusters and mortality using Cox regression analysis, adjusted for potential confounders, and visualized with Kaplan-Meier estimates. Results Among 9,992 patients with COPD and a clinically indicated baseline polysomnogram, we identified five distinct clusters based on age, comorbidity burden and sleep parameters. Overall mortality increased from 9.4% to 42% and short-term mortality (< 5.3 years) ranged from 3.4% to 24.3% in Cluster 1 to 5. In Cluster 1 younger age, in 5 high comorbidity burden and in the other three clusters, total sleep time and sleep efficiency had significant associations with mortality. Interpretation We identified five distinct clinical clusters and highlighted the significant association between total sleep time and sleep efficiency on mortality. The identified clusters highlight the importance of objective sleep parameters in determining mortality risk and phenotypic characterization in this population. Disturbed sleep in patients with COPD impact quality of life and predict adverse outcomes. To identify distinct phenotypic clusters of patients with COPD using objective sleep parameters and evaluate the associations between clusters and all-cause mortality to inform risk stratification. A longitudinal observational cohort study using nationwide Veterans Health Administration data of patients with COPD investigated for sleep disorders. Sleep parameters were extracted from polysomnography physician interpretation using a validated natural language processing algorithm. We performed cluster analysis using an unsupervised machine learning algorithm (K-means) and examined the association between clusters and mortality using Cox regression analysis, adjusted for potential confounders, and visualized with Kaplan-Meier estimates. Among 9,992 patients with COPD and a clinically indicated baseline polysomnogram, we identified five distinct clusters based on age, comorbidity burden and sleep parameters. Overall mortality increased from 9.4% to 42% and short-term mortality (< 5.3 years) ranged from 3.4% to 24.3% in Cluster 1 to 5. In Cluster 1 younger age, in 5 high comorbidity burden and in the other three clusters, total sleep time and sleep efficiency had significant associations with mortality. We identified five distinct clinical clusters and highlighted the significant association between total sleep time and sleep efficiency on mortality. The identified clusters highlight the importance of objective sleep parameters in determining mortality risk and phenotypic characterization in this population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Asteroid发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
ding应助lt采纳,获得10
2秒前
大气的半双完成签到,获得积分10
2秒前
珺倪倪发布了新的文献求助10
3秒前
淡然天问发布了新的文献求助10
5秒前
所所应助傻傻的水杯采纳,获得10
6秒前
上官若男应助harden采纳,获得10
6秒前
福福气发布了新的文献求助10
7秒前
8秒前
辣辣发布了新的文献求助10
8秒前
科研通AI6应助黑土采纳,获得10
8秒前
9秒前
称心的自行车完成签到,获得积分10
10秒前
王志霞发布了新的文献求助10
10秒前
11秒前
Lu完成签到,获得积分10
11秒前
Shirley完成签到,获得积分10
11秒前
11秒前
香果完成签到,获得积分10
12秒前
淡然天问完成签到,获得积分10
12秒前
潘道士完成签到 ,获得积分10
13秒前
13秒前
慕青应助咚巴拉采纳,获得10
13秒前
已己发布了新的文献求助10
14秒前
口岸是你完成签到,获得积分10
14秒前
MNing完成签到,获得积分20
14秒前
爱听歌的悒完成签到,获得积分10
14秒前
满意元枫完成签到,获得积分10
14秒前
14秒前
危机的蜜蜂完成签到,获得积分10
15秒前
15秒前
爱丸完成签到,获得积分10
15秒前
背后思卉应助GSR采纳,获得10
15秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354