A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater

基因组 口译(哲学) 地下水 石油 生化工程 石油工程 地下水污染 环境科学 工程类 计算机科学 地质学 化学 含水层 岩土工程 古生物学 生物化学 基因 程序设计语言
作者
Jonathan Wijaya,Joonhong Park,Yuyi Yang,Sharf Ilahi Siddiqui,Seungdae Oh
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:: 134513-134513
标识
DOI:10.1016/j.jhazmat.2024.134513
摘要

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution Petroleum contaminants, a mixture of oil-related hydrocarbon compounds, pose a prioritized health hazard. They can exhibit toxicity, mutagenicity, and/or carcinogenicity at the levels relevant in many subsurface environments, presenting both environmental and human health risks. The present study introduces a metagenome-derived artificial intelligence (AI) modeling framework for monitoring petroleum-contaminated groundwater, significantly improving the predictive accuracy of current environmental monitoring methodologies. This research demonstrates a complementary use of advanced metagenome bioinformatics and explainable AI techniques to not only validate the AI predictions but also enhance their interpretation. This encourages the broader application of AI approaches in environmental monitoring and bioremediation practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xing发布了新的文献求助10
1秒前
5秒前
6秒前
7秒前
积极绿老头应助冷静新烟采纳,获得10
8秒前
8秒前
西红柿炒鸡蛋完成签到,获得积分20
8秒前
9秒前
Zyl完成签到,获得积分10
9秒前
情怀应助walalalla采纳,获得10
10秒前
10秒前
10秒前
英俊的铭应助Xing采纳,获得10
11秒前
大壳完成签到 ,获得积分10
11秒前
Hayat发布了新的文献求助20
11秒前
爱笑的无心完成签到 ,获得积分10
12秒前
李爱国应助旺旺碎采纳,获得10
13秒前
13秒前
14秒前
14秒前
曾经电源发布了新的文献求助10
15秒前
酷波er应助西红柿炒鸡蛋采纳,获得10
15秒前
未晞发布了新的文献求助10
16秒前
17秒前
kirren发布了新的文献求助10
19秒前
LN发布了新的文献求助10
19秒前
lklk完成签到 ,获得积分10
20秒前
21秒前
木子发布了新的文献求助10
23秒前
25秒前
隐形曼青应助欢喜灵13采纳,获得10
27秒前
walalalla完成签到,获得积分20
27秒前
科研通AI2S应助活力书包采纳,获得30
32秒前
33秒前
34秒前
领导范儿应助luoluo采纳,获得10
35秒前
1234完成签到,获得积分10
36秒前
小埋发布了新的文献求助20
38秒前
ttt完成签到,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094