已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater

基因组 地下水 石油 生化工程 环境科学 工程类 计算机科学 生物 岩土工程 古生物学 生物化学 基因
作者
Jonathan Wijaya,Joonhong Park,Yuyi Yang,Sharf Ilahi Siddiqui,Seungdae Oh
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:472: 134513-134513 被引量:15
标识
DOI:10.1016/j.jhazmat.2024.134513
摘要

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution Petroleum contaminants, a mixture of oil-related hydrocarbon compounds, pose a prioritized health hazard. They can exhibit toxicity, mutagenicity, and/or carcinogenicity at the levels relevant in many subsurface environments, presenting both environmental and human health risks. The present study introduces a metagenome-derived artificial intelligence (AI) modeling framework for monitoring petroleum-contaminated groundwater, significantly improving the predictive accuracy of current environmental monitoring methodologies. This research demonstrates a complementary use of advanced metagenome bioinformatics and explainable AI techniques to not only validate the AI predictions but also enhance their interpretation. This encourages the broader application of AI approaches in environmental monitoring and bioremediation practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然听兰发布了新的文献求助10
1秒前
3秒前
4秒前
Keats完成签到,获得积分10
5秒前
cwy完成签到 ,获得积分10
6秒前
星辰大海应助优美紫槐采纳,获得10
7秒前
Johan完成签到 ,获得积分10
8秒前
wlei完成签到,获得积分10
10秒前
11秒前
爱听歌契完成签到 ,获得积分10
11秒前
无题完成签到,获得积分10
14秒前
桐桐应助壮观的雅绿采纳,获得10
14秒前
脑洞疼应助壮观的雅绿采纳,获得10
14秒前
搜集达人应助壮观的雅绿采纳,获得10
14秒前
科研通AI2S应助壮观的雅绿采纳,获得10
14秒前
情怀应助壮观的雅绿采纳,获得10
15秒前
思源应助壮观的雅绿采纳,获得10
15秒前
喏晨完成签到 ,获得积分10
17秒前
gln完成签到 ,获得积分10
20秒前
PKL发布了新的文献求助10
21秒前
星辰大海应助方汀采纳,获得10
21秒前
DrJiang完成签到,获得积分10
21秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
方汀应助科研通管家采纳,获得10
22秒前
ccm应助科研通管家采纳,获得10
22秒前
李健的小迷弟应助Keats采纳,获得10
22秒前
ccm应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
ccm应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
23秒前
26秒前
豌豆苗完成签到 ,获得积分10
26秒前
充电宝应助Ken921319005采纳,获得10
26秒前
淡淡向日葵完成签到 ,获得积分10
27秒前
11完成签到 ,获得积分10
29秒前
sxb10101给Wyy_的求助进行了留言
30秒前
Henvy完成签到,获得积分10
30秒前
31秒前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644324
求助须知:如何正确求助?哪些是违规求助? 4763686
关于积分的说明 15024662
捐赠科研通 4802727
什么是DOI,文献DOI怎么找? 2567530
邀请新用户注册赠送积分活动 1525292
关于科研通互助平台的介绍 1484725