A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater

基因组 地下水 石油 生化工程 环境科学 工程类 计算机科学 生物 岩土工程 古生物学 生物化学 基因
作者
Jonathan Wijaya,Joonhong Park,Yuyi Yang,Sharf Ilahi Siddiqui,Seungdae Oh
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:472: 134513-134513 被引量:15
标识
DOI:10.1016/j.jhazmat.2024.134513
摘要

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution Petroleum contaminants, a mixture of oil-related hydrocarbon compounds, pose a prioritized health hazard. They can exhibit toxicity, mutagenicity, and/or carcinogenicity at the levels relevant in many subsurface environments, presenting both environmental and human health risks. The present study introduces a metagenome-derived artificial intelligence (AI) modeling framework for monitoring petroleum-contaminated groundwater, significantly improving the predictive accuracy of current environmental monitoring methodologies. This research demonstrates a complementary use of advanced metagenome bioinformatics and explainable AI techniques to not only validate the AI predictions but also enhance their interpretation. This encourages the broader application of AI approaches in environmental monitoring and bioremediation practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好易发布了新的文献求助10
刚刚
炙热猎豹完成签到,获得积分10
刚刚
赫连烙发布了新的文献求助30
刚刚
w1x2123发布了新的文献求助10
刚刚
Song发布了新的文献求助20
1秒前
疯狂花生完成签到 ,获得积分10
1秒前
冰冰发布了新的文献求助20
2秒前
爆米花应助看文献了采纳,获得10
2秒前
桐桐应助我哈哈哈哈哈采纳,获得10
2秒前
隐形曼青应助邱海华采纳,获得10
3秒前
zhinan完成签到 ,获得积分20
3秒前
4秒前
科研通AI6应助九千独采纳,获得10
4秒前
jc_scholar关注了科研通微信公众号
4秒前
Lime完成签到,获得积分10
4秒前
美好易完成签到,获得积分10
5秒前
斯文败类应助Inspiring采纳,获得10
5秒前
善学以致用应助熊熊采纳,获得10
5秒前
6秒前
6秒前
6秒前
思源应助xiayiyi采纳,获得10
7秒前
Jasper应助小郭子采纳,获得10
7秒前
暴躁的夏烟应助SID采纳,获得10
7秒前
kitty完成签到,获得积分10
7秒前
wu完成签到,获得积分10
7秒前
1351567822应助xueshu采纳,获得50
7秒前
7秒前
Jasper应助xmy采纳,获得10
7秒前
LLL完成签到,获得积分10
8秒前
荣荣发布了新的文献求助10
8秒前
8秒前
Jasper应助LXF采纳,获得10
8秒前
8秒前
脑洞疼应助奥润之采纳,获得10
9秒前
yourenpkma123完成签到,获得积分10
9秒前
9秒前
科目三应助zjr@keyantong采纳,获得10
9秒前
555发布了新的文献求助10
9秒前
聪明帅哥发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721