亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater

基因组 地下水 石油 生化工程 环境科学 工程类 计算机科学 生物 岩土工程 古生物学 生物化学 基因
作者
Jonathan Wijaya,Joonhong Park,Yuyi Yang,Sharf Ilahi Siddiqui,Seungdae Oh
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:472: 134513-134513 被引量:15
标识
DOI:10.1016/j.jhazmat.2024.134513
摘要

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution Petroleum contaminants, a mixture of oil-related hydrocarbon compounds, pose a prioritized health hazard. They can exhibit toxicity, mutagenicity, and/or carcinogenicity at the levels relevant in many subsurface environments, presenting both environmental and human health risks. The present study introduces a metagenome-derived artificial intelligence (AI) modeling framework for monitoring petroleum-contaminated groundwater, significantly improving the predictive accuracy of current environmental monitoring methodologies. This research demonstrates a complementary use of advanced metagenome bioinformatics and explainable AI techniques to not only validate the AI predictions but also enhance their interpretation. This encourages the broader application of AI approaches in environmental monitoring and bioremediation practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木又完成签到,获得积分10
20秒前
40秒前
40秒前
1分钟前
超帅建发布了新的文献求助10
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
Baboon发布了新的文献求助10
1分钟前
1分钟前
超帅建完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
肉丸完成签到 ,获得积分10
3分钟前
李爱国应助putao采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
putao发布了新的文献求助10
3分钟前
3分钟前
小白菜完成签到,获得积分10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
上官枫完成签到 ,获得积分10
4分钟前
4分钟前
桦奕兮完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
信陵君无忌完成签到,获得积分10
5分钟前
支雨泽完成签到,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Jasper应助科研通管家采纳,获得50
5分钟前
putao完成签到,获得积分10
5分钟前
luobo123完成签到 ,获得积分10
5分钟前
6分钟前
葫芦侠完成签到,获得积分20
6分钟前
6分钟前
葫芦侠发布了新的文献求助10
6分钟前
隐形曼青应助H_W采纳,获得10
7分钟前
Derrick完成签到,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658030
求助须知:如何正确求助?哪些是违规求助? 4816482
关于积分的说明 15080823
捐赠科研通 4816367
什么是DOI,文献DOI怎么找? 2577299
邀请新用户注册赠送积分活动 1532309
关于科研通互助平台的介绍 1490932