A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater

基因组 地下水 石油 生化工程 环境科学 工程类 计算机科学 生物 岩土工程 生物化学 基因 古生物学
作者
Jonathan Wijaya,Joonhong Park,Yuyi Yang,Sharf Ilahi Siddiqui,Seungdae Oh
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:472: 134513-134513 被引量:11
标识
DOI:10.1016/j.jhazmat.2024.134513
摘要

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution Petroleum contaminants, a mixture of oil-related hydrocarbon compounds, pose a prioritized health hazard. They can exhibit toxicity, mutagenicity, and/or carcinogenicity at the levels relevant in many subsurface environments, presenting both environmental and human health risks. The present study introduces a metagenome-derived artificial intelligence (AI) modeling framework for monitoring petroleum-contaminated groundwater, significantly improving the predictive accuracy of current environmental monitoring methodologies. This research demonstrates a complementary use of advanced metagenome bioinformatics and explainable AI techniques to not only validate the AI predictions but also enhance their interpretation. This encourages the broader application of AI approaches in environmental monitoring and bioremediation practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余健完成签到,获得积分10
1秒前
黯然完成签到 ,获得积分10
2秒前
勤恳的书文完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
liliAnh完成签到 ,获得积分10
4秒前
迅速凝竹完成签到 ,获得积分10
6秒前
liangguangyuan完成签到 ,获得积分10
8秒前
xiaoguang li完成签到,获得积分10
9秒前
冷静丸子完成签到 ,获得积分10
10秒前
乾明少侠完成签到 ,获得积分10
13秒前
薄荷小新完成签到 ,获得积分10
15秒前
zt完成签到,获得积分10
17秒前
zzb完成签到,获得积分10
17秒前
淡淡阁完成签到 ,获得积分10
17秒前
辛勤的毛毛完成签到 ,获得积分10
18秒前
冬烜完成签到 ,获得积分10
19秒前
Denvir完成签到 ,获得积分10
20秒前
疯狂的迪子完成签到 ,获得积分10
21秒前
安安完成签到 ,获得积分10
21秒前
大模型应助lailight采纳,获得10
21秒前
南梦娇完成签到 ,获得积分10
21秒前
小巧的怜晴完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
龙叶静完成签到 ,获得积分10
24秒前
无脚鸟完成签到,获得积分10
24秒前
free2030完成签到,获得积分10
24秒前
jeffrey完成签到,获得积分0
25秒前
lcxszsd完成签到 ,获得积分10
27秒前
Murphy~完成签到,获得积分10
28秒前
Aimee完成签到 ,获得积分10
29秒前
zch曹县66完成签到,获得积分10
29秒前
30秒前
苗条白枫完成签到 ,获得积分10
30秒前
didilucky完成签到,获得积分10
30秒前
奔铂儿钯完成签到 ,获得积分10
31秒前
田様应助wuju采纳,获得10
31秒前
iNk应助free2030采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
科研小郭完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613242
求助须知:如何正确求助?哪些是违规求助? 4018132
关于积分的说明 12437114
捐赠科研通 3700478
什么是DOI,文献DOI怎么找? 2040817
邀请新用户注册赠送积分活动 1073580
科研通“疑难数据库(出版商)”最低求助积分说明 957242