A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater

基因组 地下水 石油 生化工程 环境科学 工程类 计算机科学 生物 岩土工程 生物化学 基因 古生物学
作者
Jonathan Wijaya,Joonhong Park,Yuyi Yang,Sharf Ilahi Siddiqui,Seungdae Oh
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:472: 134513-134513 被引量:11
标识
DOI:10.1016/j.jhazmat.2024.134513
摘要

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution Petroleum contaminants, a mixture of oil-related hydrocarbon compounds, pose a prioritized health hazard. They can exhibit toxicity, mutagenicity, and/or carcinogenicity at the levels relevant in many subsurface environments, presenting both environmental and human health risks. The present study introduces a metagenome-derived artificial intelligence (AI) modeling framework for monitoring petroleum-contaminated groundwater, significantly improving the predictive accuracy of current environmental monitoring methodologies. This research demonstrates a complementary use of advanced metagenome bioinformatics and explainable AI techniques to not only validate the AI predictions but also enhance their interpretation. This encourages the broader application of AI approaches in environmental monitoring and bioremediation practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8oYg4n完成签到,获得积分10
1秒前
新之助发布了新的文献求助10
1秒前
酷波er应助土狗王采纳,获得10
1秒前
战神幽默完成签到,获得积分10
2秒前
2秒前
乐乐应助zhengjing采纳,获得10
2秒前
酷波er应助cwy采纳,获得10
3秒前
3秒前
Cody发布了新的文献求助10
4秒前
zzrg完成签到,获得积分10
5秒前
体贴砖头关注了科研通微信公众号
6秒前
图图超人发布了新的文献求助10
6秒前
ZYH关注了科研通微信公众号
7秒前
Hello应助wwww采纳,获得10
7秒前
8秒前
华仔应助欢喜盼烟采纳,获得10
8秒前
小蘑菇应助芒果不忙采纳,获得10
8秒前
直率从露发布了新的文献求助10
8秒前
xgq001835完成签到 ,获得积分10
9秒前
风中书竹完成签到,获得积分20
9秒前
小木发布了新的文献求助10
10秒前
开拓者完成签到,获得积分10
10秒前
10秒前
holmes完成签到 ,获得积分10
10秒前
10秒前
10秒前
你好啊发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
向日葵完成签到,获得积分10
14秒前
大布丁完成签到,获得积分10
14秒前
Yaxin发布了新的文献求助10
15秒前
15秒前
15秒前
晋启轩发布了新的文献求助10
16秒前
完美世界应助xixi采纳,获得10
17秒前
苗条的一一完成签到,获得积分10
17秒前
18秒前
充电宝应助wwww采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416159
求助须知:如何正确求助?哪些是违规求助? 4532488
关于积分的说明 14135103
捐赠科研通 4448333
什么是DOI,文献DOI怎么找? 2440200
邀请新用户注册赠送积分活动 1432098
关于科研通互助平台的介绍 1409686