A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater

基因组 地下水 石油 生化工程 环境科学 工程类 计算机科学 生物 岩土工程 古生物学 生物化学 基因
作者
Jonathan Wijaya,Joonhong Park,Yuyi Yang,Sharf Ilahi Siddiqui,Seungdae Oh
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:472: 134513-134513 被引量:11
标识
DOI:10.1016/j.jhazmat.2024.134513
摘要

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution Petroleum contaminants, a mixture of oil-related hydrocarbon compounds, pose a prioritized health hazard. They can exhibit toxicity, mutagenicity, and/or carcinogenicity at the levels relevant in many subsurface environments, presenting both environmental and human health risks. The present study introduces a metagenome-derived artificial intelligence (AI) modeling framework for monitoring petroleum-contaminated groundwater, significantly improving the predictive accuracy of current environmental monitoring methodologies. This research demonstrates a complementary use of advanced metagenome bioinformatics and explainable AI techniques to not only validate the AI predictions but also enhance their interpretation. This encourages the broader application of AI approaches in environmental monitoring and bioremediation practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助aha采纳,获得10
1秒前
友好凌柏完成签到,获得积分10
1秒前
蛋仔完成签到,获得积分10
1秒前
Bin完成签到,获得积分10
1秒前
星辰大海应助dzdznb采纳,获得30
1秒前
3秒前
3秒前
wanci应助Sylvia采纳,获得20
3秒前
问天完成签到 ,获得积分10
3秒前
4秒前
小陈呀完成签到 ,获得积分10
4秒前
4秒前
小tiger完成签到,获得积分10
5秒前
GAOSAN完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
MINE发布了新的文献求助10
5秒前
javalin发布了新的文献求助10
5秒前
小二郎应助MA采纳,获得10
5秒前
外向代柔完成签到 ,获得积分10
5秒前
Hello应助Genius采纳,获得10
6秒前
临妤发布了新的文献求助10
6秒前
6秒前
酷酷的阳不拉吉完成签到,获得积分10
7秒前
情怀应助可爱绮采纳,获得10
7秒前
我是你爹发布了新的文献求助10
7秒前
小二郎应助甜甜圈采纳,获得10
7秒前
8秒前
SciGPT应助ao黛雷赫采纳,获得10
8秒前
科研通AI6应助干净冰颜采纳,获得10
8秒前
9秒前
agrinxin发布了新的文献求助10
9秒前
bkagyin应助wzz采纳,获得10
9秒前
9秒前
9秒前
jing发布了新的文献求助10
10秒前
zhouxue完成签到,获得积分10
10秒前
三点水完成签到,获得积分10
11秒前
小二郎应助不爱吃柠檬采纳,获得30
11秒前
RilerT完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448