生物制氢
催化作用
再生(生物学)
生产(经济)
化学
材料科学
纳米技术
制氢
细胞生物学
有机化学
生物
宏观经济学
经济
作者
Yaoqiang Wang,Yu Jin,Gang Xiao,Shaojie Wang,Zishuai Wang,Jan Baeyens,Haijia Su
出处
期刊:ACS ES&T engineering
[American Chemical Society]
日期:2024-06-03
卷期号:4 (8): 1948-1958
被引量:1
标识
DOI:10.1021/acsestengg.4c00141
摘要
Efficient coenzyme regeneration in biohybrids can help overcome the challenge of insufficient reducing power in biohydrogen production, but the performance of biohybrids is often hampered by light-dependent and inefficient photoelectron transmembrane transfer. Here, we present an intracellular hybrid system composed of gold–palladium nanoalloys and Clostridium butyricum, which demonstrates efficient dark-catalyzed coenzyme regeneration, thereby enhancing hydrogen production capabilities. By utilizing triethanolamine (TEOA) as the electron donor, the hybrid system achieved a maximum hydrogen production of 2.14 mol of H2·mol–1 glucose, resulting in a remarkable increase of 47.37%. The Au–Pd nanoalloy regenerated intracellular NADH through chemical catalysis with TEOA as the electron donor, which was confirmed by increased reducing power levels and pronounced peak currents. Consequently, the hybrid system had a higher reducing power level, which enhanced the hydrogen-producing activity of the pyruvate formate-lyase (PFL) and NADH-ferredoxin oxidoreductase (NFOR) pathways. The PFL pathway oxidizes pyruvate, while the NFOR pathway directly oxidizes NADH. Pyruvate, a substrate required for hydrogen production in the PFL pathway, is generated through a combination of glucose phosphate transfer and phosphoenolpyruvate (PEP) dephosphorylation. This study offers theoretical guidance for the development of a dark hybrid system of nanocatalysts and microbes that can effectively produce biohydrogen and be used for other applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI