Au–Pd Nanoalloy-Catalyzed Intracellular Reducing Power Regeneration to Boost the Biohydrogen Production in a Biohybrid System

生物制氢 催化作用 再生(生物学) 生产(经济) 化学 材料科学 纳米技术 制氢 细胞生物学 有机化学 生物 宏观经济学 经济
作者
Yaoqiang Wang,Yu Jin,Gang Xiao,Shaojie Wang,Zishuai Wang,Jan Baeyens,Haijia Su
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1948-1958 被引量:3
标识
DOI:10.1021/acsestengg.4c00141
摘要

Efficient coenzyme regeneration in biohybrids can help overcome the challenge of insufficient reducing power in biohydrogen production, but the performance of biohybrids is often hampered by light-dependent and inefficient photoelectron transmembrane transfer. Here, we present an intracellular hybrid system composed of gold–palladium nanoalloys and Clostridium butyricum, which demonstrates efficient dark-catalyzed coenzyme regeneration, thereby enhancing hydrogen production capabilities. By utilizing triethanolamine (TEOA) as the electron donor, the hybrid system achieved a maximum hydrogen production of 2.14 mol of H2·mol–1 glucose, resulting in a remarkable increase of 47.37%. The Au–Pd nanoalloy regenerated intracellular NADH through chemical catalysis with TEOA as the electron donor, which was confirmed by increased reducing power levels and pronounced peak currents. Consequently, the hybrid system had a higher reducing power level, which enhanced the hydrogen-producing activity of the pyruvate formate-lyase (PFL) and NADH-ferredoxin oxidoreductase (NFOR) pathways. The PFL pathway oxidizes pyruvate, while the NFOR pathway directly oxidizes NADH. Pyruvate, a substrate required for hydrogen production in the PFL pathway, is generated through a combination of glucose phosphate transfer and phosphoenolpyruvate (PEP) dephosphorylation. This study offers theoretical guidance for the development of a dark hybrid system of nanocatalysts and microbes that can effectively produce biohydrogen and be used for other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
橘子味汽水完成签到 ,获得积分10
2秒前
2秒前
慢波发布了新的文献求助10
2秒前
占那个完成签到 ,获得积分10
2秒前
宋瑞完成签到,获得积分10
3秒前
朱信姿完成签到,获得积分10
3秒前
4秒前
Maximuszhao完成签到,获得积分10
5秒前
5秒前
CUI发布了新的文献求助10
6秒前
科研通AI6应助Davidjin采纳,获得10
6秒前
wanci应助长情洙采纳,获得10
6秒前
6秒前
整齐易巧发布了新的文献求助30
6秒前
7秒前
浮游应助能干的问晴采纳,获得10
7秒前
nico完成签到,获得积分10
7秒前
7秒前
梦自然发布了新的文献求助10
8秒前
8秒前
王欧尼发布了新的文献求助10
8秒前
fhghhhjh发布了新的文献求助10
9秒前
周周发布了新的文献求助10
9秒前
完美世界应助霸气的湘采纳,获得10
9秒前
10秒前
随便起个吧完成签到 ,获得积分10
11秒前
星辰大海应助lllllty采纳,获得10
11秒前
项歌完成签到 ,获得积分10
11秒前
自信尔竹发布了新的文献求助10
12秒前
思源应助高高冰旋采纳,获得10
12秒前
庞鲂完成签到,获得积分10
13秒前
14秒前
14秒前
十七发布了新的文献求助10
14秒前
超级不惜完成签到,获得积分10
14秒前
Moonsa发布了新的文献求助10
15秒前
世界末末日完成签到,获得积分10
16秒前
二牛完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403