Au–Pd Nanoalloy-Catalyzed Intracellular Reducing Power Regeneration to Boost the Biohydrogen Production in a Biohybrid System

生物制氢 催化作用 再生(生物学) 生产(经济) 化学 材料科学 纳米技术 制氢 细胞生物学 有机化学 生物 宏观经济学 经济
作者
Yaoqiang Wang,Yu Jin,Gang Xiao,Shaojie Wang,Zishuai Wang,Jan Baeyens,Haijia Su
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1948-1958 被引量:1
标识
DOI:10.1021/acsestengg.4c00141
摘要

Efficient coenzyme regeneration in biohybrids can help overcome the challenge of insufficient reducing power in biohydrogen production, but the performance of biohybrids is often hampered by light-dependent and inefficient photoelectron transmembrane transfer. Here, we present an intracellular hybrid system composed of gold–palladium nanoalloys and Clostridium butyricum, which demonstrates efficient dark-catalyzed coenzyme regeneration, thereby enhancing hydrogen production capabilities. By utilizing triethanolamine (TEOA) as the electron donor, the hybrid system achieved a maximum hydrogen production of 2.14 mol of H2·mol–1 glucose, resulting in a remarkable increase of 47.37%. The Au–Pd nanoalloy regenerated intracellular NADH through chemical catalysis with TEOA as the electron donor, which was confirmed by increased reducing power levels and pronounced peak currents. Consequently, the hybrid system had a higher reducing power level, which enhanced the hydrogen-producing activity of the pyruvate formate-lyase (PFL) and NADH-ferredoxin oxidoreductase (NFOR) pathways. The PFL pathway oxidizes pyruvate, while the NFOR pathway directly oxidizes NADH. Pyruvate, a substrate required for hydrogen production in the PFL pathway, is generated through a combination of glucose phosphate transfer and phosphoenolpyruvate (PEP) dephosphorylation. This study offers theoretical guidance for the development of a dark hybrid system of nanocatalysts and microbes that can effectively produce biohydrogen and be used for other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助陶醉觅夏采纳,获得10
1秒前
1秒前
独特凡松完成签到,获得积分10
1秒前
木笔朱瑾完成签到 ,获得积分10
2秒前
Rinohalt完成签到,获得积分10
2秒前
3秒前
孙梁子完成签到,获得积分10
3秒前
核桃花生奶兔完成签到 ,获得积分10
4秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
5秒前
6秒前
孙奕发布了新的文献求助10
6秒前
xiaotian_fan完成签到,获得积分10
6秒前
8秒前
8秒前
科研通AI2S应助laochen采纳,获得10
8秒前
盘尼西林发布了新的文献求助10
8秒前
迟大猫应助专心搞学术采纳,获得10
9秒前
11秒前
孙奕完成签到,获得积分10
12秒前
12秒前
俟天晴完成签到,获得积分10
12秒前
淡定问芙发布了新的文献求助30
13秒前
15秒前
Lewis完成签到,获得积分10
16秒前
orixero应助TranYan采纳,获得10
16秒前
猪猪hero发布了新的文献求助10
18秒前
19秒前
今后应助333采纳,获得10
20秒前
pu发布了新的文献求助10
21秒前
Akim应助梓榆采纳,获得10
22秒前
劼大大完成签到,获得积分10
22秒前
最优解完成签到 ,获得积分20
23秒前
23秒前
通~发布了新的文献求助10
23秒前
一段乐多完成签到,获得积分10
24秒前
24秒前
24秒前
给我找完成签到,获得积分10
25秒前
桐桐应助Yuki0616采纳,获得10
25秒前
小马甲应助鸣隐采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794