Machine Learning Assisted Enhancement in a Two-Dimensional Material’s Sensing Performance

计算机科学 材料科学 人工智能
作者
Suparna Das,Hirak Mazumdar,Kamil Reza Khondakar,Ajeet Kaushik
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (12): 13893-13918 被引量:1
标识
DOI:10.1021/acsanm.4c02127
摘要

Two-dimensional (2D) materials have seen a dramatic increase in use in recent years due to their exceptional characteristics, which make them perfect for a wide range of sensing applications. However, achieving optimal sensing performance in 2D material-based sensors often poses challenges owing to material limitations and environmental factors. The combination of ML algorithms with 2D materials offers a way to maximize selectivity, sensitivity, and overall sensor dependability. The study starts by looking at the basic characteristics of many 2D materials and their uses in sensing, such as graphene and transition metal dichalcogenides (TMDs). It then explores the difficulties encountered by conventional sensing techniques and shows how machine learning (ML) techniques overcome these difficulties. A thorough examination of the various machine learning methods used with 2D materials is provided, along with an explanation of their functions in data processing, pattern identification, and real-time adaptive sensing. The paper also discusses how ML might lead to better performance measures including lower false positive rates and higher accuracy. Comprehensive analysis is done on case studies that demonstrate effective implementations in many sensing domains, such as industrial applications, environmental monitoring, and healthcare. In conclusion, the abstract discusses prospects for the future, highlighting how machine learning-assisted 2D material sensors are developing and how they might transform sensing technologies in a variety of fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
shhoing应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
shhoing应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
邓佳鑫Alan应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
宝宝关注了科研通微信公众号
2秒前
2秒前
3秒前
QOP应助QY11采纳,获得10
4秒前
Albert发布了新的文献求助10
6秒前
9秒前
Felix发布了新的文献求助10
9秒前
灰鸽舞完成签到 ,获得积分10
10秒前
Neon完成签到,获得积分10
11秒前
可乐完成签到,获得积分20
13秒前
笨笨的怜雪完成签到 ,获得积分10
14秒前
南希maggie应助美好斓采纳,获得30
14秒前
呛口小花椒完成签到 ,获得积分10
16秒前
17秒前
长情的涔完成签到 ,获得积分10
17秒前
19秒前
丰富的茗发布了新的文献求助10
19秒前
科研通AI5应助cheng采纳,获得10
20秒前
20秒前
健忘碧菡发布了新的文献求助10
22秒前
香蕉不言发布了新的文献求助10
26秒前
26秒前
27秒前
mbl2006发布了新的文献求助200
28秒前
敏er好学发布了新的文献求助10
31秒前
33秒前
likey完成签到,获得积分10
34秒前
宁紫涵发布了新的文献求助10
37秒前
37秒前
bkagyin应助努力的璇子采纳,获得10
37秒前
笨鸟先飞发布了新的文献求助10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671057
求助须知:如何正确求助?哪些是违规求助? 3227945
关于积分的说明 9777647
捐赠科研通 2938131
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735959