Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles

计算机科学 计算机视觉 人工智能 对象(语法)
作者
M. F. Oliveira,Ricardo Cerqueira,João Ribeiro Pinto,Joaquim Fonseca,Luís F. Teixeira
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tiv.2024.3409409
摘要

Autonomous Vehicles aim to understand their surrounding environment by detecting relevant objects in the scene, which can be performed using a combination of sensors. The accurate prediction of pedestrians is a particularly challenging task, since the existing algorithms have more difficulty detecting small objects. This work studies and addresses this often overlooked problem by proposing Multimodal PointPillars (M-PP), a fast and effective novel fusion architecture for 3D object detection. Inspired by both MVX-Net and PointPillars, image features from a 2D CNN-based feature map are fused with the 3D point cloud in an early fusion architecture. By changing the heavy 3D convolutions of MVX-Net to a set of convolutional layers in 2D space, along with combining LiDAR and image information at an early stage, M-PP considerably improves inference time over the baseline, running at 28.49 Hz. It achieves inference speeds suitable for real-world applications while keeping the high performance of multimodal approaches. Extensive experiments show that our proposed architecture outperforms both MVX-Net and PointPillars for the pedestrian class in the KITTI 3D object detection dataset, with 62.78% in $AP_{BEV}$ (moderate difficulty), while also outperforming MVX-Net in the nuScenes dataset. Moreover, experiments were conducted to measure the detection performance based on object distance. The performance of M-PP surpassed other methods in pedestrian detection at any distance, particularly for faraway objects (more than 30 meters). Qualitative analysis shows that M-PP visibly outperformed MVX-Net for pedestrians and cyclists, while simultaneously making accurate predictions of cars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助迷你的书蕾采纳,获得10
刚刚
东风发布了新的文献求助10
1秒前
2秒前
LANER完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
华半仙完成签到,获得积分20
5秒前
千陽完成签到 ,获得积分10
5秒前
SYLH应助scizhu兰采纳,获得30
5秒前
8秒前
8秒前
彻底完成签到,获得积分10
13秒前
13秒前
yr完成签到 ,获得积分10
13秒前
枫泾完成签到,获得积分10
13秒前
14秒前
14秒前
彬彬爷888完成签到 ,获得积分10
15秒前
chuanyu发布了新的文献求助10
15秒前
organic tirrttf完成签到,获得积分10
15秒前
16秒前
阿敬发布了新的文献求助30
16秒前
柯氏气团不是气团完成签到,获得积分10
16秒前
好运连连完成签到,获得积分10
17秒前
123456789完成签到,获得积分10
17秒前
hzj关注了科研通微信公众号
18秒前
颜亚妮完成签到,获得积分10
18秒前
小风波发布了新的文献求助10
19秒前
jiayou完成签到,获得积分10
21秒前
21秒前
22秒前
我是老大应助颜亚妮采纳,获得10
23秒前
廖英健完成签到 ,获得积分10
24秒前
Hibiscus95完成签到,获得积分10
24秒前
24秒前
26秒前
星辰大海应助静1997采纳,获得10
26秒前
新威宝贝发布了新的文献求助10
27秒前
么么么完成签到 ,获得积分10
27秒前
激昂的秀发完成签到,获得积分10
28秒前
进退须臾发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719