Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles

计算机科学 计算机视觉 人工智能 对象(语法)
作者
M. F. Oliveira,Ricardo Cerqueira,João Ribeiro Pinto,Joaquim Fonseca,Luís F. Teixeira
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tiv.2024.3409409
摘要

Autonomous Vehicles aim to understand their surrounding environment by detecting relevant objects in the scene, which can be performed using a combination of sensors. The accurate prediction of pedestrians is a particularly challenging task, since the existing algorithms have more difficulty detecting small objects. This work studies and addresses this often overlooked problem by proposing Multimodal PointPillars (M-PP), a fast and effective novel fusion architecture for 3D object detection. Inspired by both MVX-Net and PointPillars, image features from a 2D CNN-based feature map are fused with the 3D point cloud in an early fusion architecture. By changing the heavy 3D convolutions of MVX-Net to a set of convolutional layers in 2D space, along with combining LiDAR and image information at an early stage, M-PP considerably improves inference time over the baseline, running at 28.49 Hz. It achieves inference speeds suitable for real-world applications while keeping the high performance of multimodal approaches. Extensive experiments show that our proposed architecture outperforms both MVX-Net and PointPillars for the pedestrian class in the KITTI 3D object detection dataset, with 62.78% in $AP_{BEV}$ (moderate difficulty), while also outperforming MVX-Net in the nuScenes dataset. Moreover, experiments were conducted to measure the detection performance based on object distance. The performance of M-PP surpassed other methods in pedestrian detection at any distance, particularly for faraway objects (more than 30 meters). Qualitative analysis shows that M-PP visibly outperformed MVX-Net for pedestrians and cyclists, while simultaneously making accurate predictions of cars.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海之语完成签到,获得积分10
刚刚
酷波er应助wtc采纳,获得10
刚刚
此生长安发布了新的文献求助10
1秒前
1秒前
1秒前
坚定傲珊发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
wzc完成签到 ,获得积分10
2秒前
2秒前
Daisy发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
22发布了新的文献求助10
4秒前
博士牲牛马完成签到,获得积分10
4秒前
4秒前
善学以致用应助lize5493采纳,获得10
5秒前
顾矜应助xiao采纳,获得10
5秒前
tsw完成签到,获得积分10
5秒前
飞翔的霸天哥应助carl采纳,获得30
5秒前
Huihuang_He发布了新的文献求助10
5秒前
闾丘志泽发布了新的文献求助30
6秒前
susu完成签到,获得积分10
6秒前
明亮惋庭完成签到,获得积分10
8秒前
8秒前
火星上的迎天完成签到,获得积分10
8秒前
8秒前
搜集达人应助weiliu采纳,获得10
8秒前
NoNoQ完成签到,获得积分10
8秒前
小胖饼饼发布了新的文献求助10
9秒前
10秒前
慕青应助无辜的从云采纳,获得30
11秒前
烟花应助王明月采纳,获得10
12秒前
神勇的荟发布了新的文献求助10
13秒前
13秒前
隐形曼青应助jiao采纳,获得10
13秒前
14秒前
我爱学习发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710