Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles

计算机科学 计算机视觉 人工智能 对象(语法)
作者
M. F. Oliveira,Ricardo Cerqueira,João Ribeiro Pinto,Joaquim Fonseca,Luís F. Teixeira
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tiv.2024.3409409
摘要

Autonomous Vehicles aim to understand their surrounding environment by detecting relevant objects in the scene, which can be performed using a combination of sensors. The accurate prediction of pedestrians is a particularly challenging task, since the existing algorithms have more difficulty detecting small objects. This work studies and addresses this often overlooked problem by proposing Multimodal PointPillars (M-PP), a fast and effective novel fusion architecture for 3D object detection. Inspired by both MVX-Net and PointPillars, image features from a 2D CNN-based feature map are fused with the 3D point cloud in an early fusion architecture. By changing the heavy 3D convolutions of MVX-Net to a set of convolutional layers in 2D space, along with combining LiDAR and image information at an early stage, M-PP considerably improves inference time over the baseline, running at 28.49 Hz. It achieves inference speeds suitable for real-world applications while keeping the high performance of multimodal approaches. Extensive experiments show that our proposed architecture outperforms both MVX-Net and PointPillars for the pedestrian class in the KITTI 3D object detection dataset, with 62.78% in $AP_{BEV}$ (moderate difficulty), while also outperforming MVX-Net in the nuScenes dataset. Moreover, experiments were conducted to measure the detection performance based on object distance. The performance of M-PP surpassed other methods in pedestrian detection at any distance, particularly for faraway objects (more than 30 meters). Qualitative analysis shows that M-PP visibly outperformed MVX-Net for pedestrians and cyclists, while simultaneously making accurate predictions of cars.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
song完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
雪原白鹿发布了新的文献求助10
3秒前
3秒前
李顺杰发布了新的文献求助10
3秒前
追寻采梦发布了新的文献求助10
3秒前
4秒前
4秒前
七田皿发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
mol发布了新的文献求助10
6秒前
桐桐应助璟晔采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
傻傻的哈密瓜完成签到,获得积分10
8秒前
简柠发布了新的文献求助10
8秒前
Miracle发布了新的文献求助10
9秒前
丘比特应助洁净的智宸采纳,获得10
9秒前
许诺发布了新的文献求助10
10秒前
受伤的冰姬完成签到,获得积分10
10秒前
耍酷千亦发布了新的文献求助10
10秒前
RJC发布了新的文献求助10
10秒前
xuxu完成签到,获得积分10
11秒前
13秒前
13秒前
华仔应助LBQ采纳,获得10
13秒前
13秒前
14秒前
14秒前
mol完成签到,获得积分10
14秒前
Sunny完成签到,获得积分10
16秒前
16秒前
科研通AI6.1应助qqq采纳,获得10
16秒前
houfei发布了新的文献求助10
17秒前
小王完成签到,获得积分10
18秒前
18秒前
19秒前
强仔发布了新的文献求助10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753261
求助须知:如何正确求助?哪些是违规求助? 5479350
关于积分的说明 15377001
捐赠科研通 4892141
什么是DOI,文献DOI怎么找? 2630924
邀请新用户注册赠送积分活动 1579097
关于科研通互助平台的介绍 1534924