清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles

计算机科学 计算机视觉 人工智能 对象(语法)
作者
M. F. Oliveira,Ricardo Cerqueira,João Ribeiro Pinto,Joaquim Fonseca,Luís F. Teixeira
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tiv.2024.3409409
摘要

Autonomous Vehicles aim to understand their surrounding environment by detecting relevant objects in the scene, which can be performed using a combination of sensors. The accurate prediction of pedestrians is a particularly challenging task, since the existing algorithms have more difficulty detecting small objects. This work studies and addresses this often overlooked problem by proposing Multimodal PointPillars (M-PP), a fast and effective novel fusion architecture for 3D object detection. Inspired by both MVX-Net and PointPillars, image features from a 2D CNN-based feature map are fused with the 3D point cloud in an early fusion architecture. By changing the heavy 3D convolutions of MVX-Net to a set of convolutional layers in 2D space, along with combining LiDAR and image information at an early stage, M-PP considerably improves inference time over the baseline, running at 28.49 Hz. It achieves inference speeds suitable for real-world applications while keeping the high performance of multimodal approaches. Extensive experiments show that our proposed architecture outperforms both MVX-Net and PointPillars for the pedestrian class in the KITTI 3D object detection dataset, with 62.78% in $AP_{BEV}$ (moderate difficulty), while also outperforming MVX-Net in the nuScenes dataset. Moreover, experiments were conducted to measure the detection performance based on object distance. The performance of M-PP surpassed other methods in pedestrian detection at any distance, particularly for faraway objects (more than 30 meters). Qualitative analysis shows that M-PP visibly outperformed MVX-Net for pedestrians and cyclists, while simultaneously making accurate predictions of cars.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
7秒前
ceeray23应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
ceeray23应助科研通管家采纳,获得20
7秒前
xun完成签到,获得积分20
8秒前
ninini完成签到 ,获得积分10
29秒前
Augustines完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Kkk118发布了新的文献求助10
1分钟前
Honor完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
Kkk118完成签到,获得积分20
1分钟前
精明玲完成签到 ,获得积分10
1分钟前
kkscanl完成签到 ,获得积分10
1分钟前
CadoreK完成签到 ,获得积分10
2分钟前
科研通AI2S应助予秋采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
Hello应助Kkk118采纳,获得10
2分钟前
widesky777完成签到 ,获得积分10
2分钟前
予秋发布了新的文献求助10
2分钟前
笑傲完成签到,获得积分10
2分钟前
2分钟前
予秋完成签到,获得积分10
2分钟前
Dawn发布了新的文献求助10
2分钟前
2分钟前
巴豆完成签到 ,获得积分10
2分钟前
2分钟前
Harlotte完成签到 ,获得积分10
2分钟前
飞翔的企鹅完成签到,获得积分10
2分钟前
默默问芙完成签到,获得积分10
2分钟前
chenxiaofang完成签到 ,获得积分10
2分钟前
快乐的90后fjk完成签到 ,获得积分10
3分钟前
豆子完成签到 ,获得积分10
3分钟前
Axs完成签到,获得积分10
3分钟前
木子木子粒完成签到 ,获得积分10
3分钟前
tongttt完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599901
求助须知:如何正确求助?哪些是违规求助? 4685655
关于积分的说明 14838739
捐赠科研通 4673146
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470985