Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles

计算机科学 计算机视觉 人工智能 对象(语法)
作者
M. F. Oliveira,Ricardo Cerqueira,João Ribeiro Pinto,Joaquim Fonseca,Luís F. Teixeira
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tiv.2024.3409409
摘要

Autonomous Vehicles aim to understand their surrounding environment by detecting relevant objects in the scene, which can be performed using a combination of sensors. The accurate prediction of pedestrians is a particularly challenging task, since the existing algorithms have more difficulty detecting small objects. This work studies and addresses this often overlooked problem by proposing Multimodal PointPillars (M-PP), a fast and effective novel fusion architecture for 3D object detection. Inspired by both MVX-Net and PointPillars, image features from a 2D CNN-based feature map are fused with the 3D point cloud in an early fusion architecture. By changing the heavy 3D convolutions of MVX-Net to a set of convolutional layers in 2D space, along with combining LiDAR and image information at an early stage, M-PP considerably improves inference time over the baseline, running at 28.49 Hz. It achieves inference speeds suitable for real-world applications while keeping the high performance of multimodal approaches. Extensive experiments show that our proposed architecture outperforms both MVX-Net and PointPillars for the pedestrian class in the KITTI 3D object detection dataset, with 62.78% in $AP_{BEV}$ (moderate difficulty), while also outperforming MVX-Net in the nuScenes dataset. Moreover, experiments were conducted to measure the detection performance based on object distance. The performance of M-PP surpassed other methods in pedestrian detection at any distance, particularly for faraway objects (more than 30 meters). Qualitative analysis shows that M-PP visibly outperformed MVX-Net for pedestrians and cyclists, while simultaneously making accurate predictions of cars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助张三采纳,获得10
刚刚
Roy发布了新的文献求助10
1秒前
2秒前
enen发布了新的文献求助10
2秒前
ZR发布了新的文献求助10
2秒前
硕shuo完成签到,获得积分10
4秒前
4秒前
4秒前
hyman发布了新的文献求助10
5秒前
852应助猫车高手采纳,获得10
5秒前
看起来不太强完成签到,获得积分10
5秒前
Meyako应助清脆又晴采纳,获得20
6秒前
6秒前
天亮了发布了新的文献求助20
7秒前
nan盆友发布了新的文献求助10
8秒前
10秒前
10秒前
xinxinxin发布了新的文献求助10
10秒前
ddd完成签到 ,获得积分10
11秒前
12秒前
wo完成签到 ,获得积分10
13秒前
可爱的函函应助猫猫虫采纳,获得10
13秒前
13秒前
木又权完成签到,获得积分10
13秒前
14秒前
谦让寄容完成签到,获得积分10
14秒前
ZR完成签到,获得积分10
14秒前
金岁岁完成签到,获得积分10
15秒前
小二郎应助勇哥你好采纳,获得10
15秒前
红叶再开应助天亮了采纳,获得10
15秒前
清秀初晴发布了新的文献求助10
16秒前
16秒前
小文cremen完成签到 ,获得积分10
17秒前
Orange应助极电采纳,获得10
17秒前
我要啃木头完成签到,获得积分10
18秒前
猫车高手发布了新的文献求助10
18秒前
18秒前
livra1058完成签到,获得积分10
19秒前
小伊发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601041
求助须知:如何正确求助?哪些是违规求助? 4010894
关于积分的说明 12417953
捐赠科研通 3690812
什么是DOI,文献DOI怎么找? 2034703
邀请新用户注册赠送积分活动 1067979
科研通“疑难数据库(出版商)”最低求助积分说明 952613