亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles

计算机科学 计算机视觉 人工智能 对象(语法)
作者
M. F. Oliveira,Ricardo Cerqueira,João Ribeiro Pinto,Joaquim Fonseca,Luís F. Teixeira
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tiv.2024.3409409
摘要

Autonomous Vehicles aim to understand their surrounding environment by detecting relevant objects in the scene, which can be performed using a combination of sensors. The accurate prediction of pedestrians is a particularly challenging task, since the existing algorithms have more difficulty detecting small objects. This work studies and addresses this often overlooked problem by proposing Multimodal PointPillars (M-PP), a fast and effective novel fusion architecture for 3D object detection. Inspired by both MVX-Net and PointPillars, image features from a 2D CNN-based feature map are fused with the 3D point cloud in an early fusion architecture. By changing the heavy 3D convolutions of MVX-Net to a set of convolutional layers in 2D space, along with combining LiDAR and image information at an early stage, M-PP considerably improves inference time over the baseline, running at 28.49 Hz. It achieves inference speeds suitable for real-world applications while keeping the high performance of multimodal approaches. Extensive experiments show that our proposed architecture outperforms both MVX-Net and PointPillars for the pedestrian class in the KITTI 3D object detection dataset, with 62.78% in $AP_{BEV}$ (moderate difficulty), while also outperforming MVX-Net in the nuScenes dataset. Moreover, experiments were conducted to measure the detection performance based on object distance. The performance of M-PP surpassed other methods in pedestrian detection at any distance, particularly for faraway objects (more than 30 meters). Qualitative analysis shows that M-PP visibly outperformed MVX-Net for pedestrians and cyclists, while simultaneously making accurate predictions of cars.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊大头发布了新的文献求助10
3秒前
7秒前
JamesPei应助熊大头采纳,获得10
13秒前
16秒前
lixuebin完成签到 ,获得积分10
16秒前
20秒前
21秒前
32秒前
汉堡包应助七安采纳,获得10
32秒前
茶叶派发布了新的文献求助20
44秒前
1分钟前
1分钟前
清水烫春菜完成签到,获得积分10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
fuyaoye2010完成签到,获得积分10
1分钟前
fuyaoye2010发布了新的文献求助10
1分钟前
wanci应助茶叶派采纳,获得10
1分钟前
1分钟前
lhr发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
anna完成签到 ,获得积分10
1分钟前
2分钟前
迅速初柳发布了新的文献求助10
2分钟前
2分钟前
Lyhz发布了新的文献求助10
2分钟前
充电宝应助迅速初柳采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
哈哈哈哈发布了新的文献求助10
2分钟前
LYL完成签到,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746703
求助须知:如何正确求助?哪些是违规求助? 5438025
关于积分的说明 15355789
捐赠科研通 4886737
什么是DOI,文献DOI怎么找? 2627400
邀请新用户注册赠送积分活动 1575879
关于科研通互助平台的介绍 1532607