Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles

计算机科学 计算机视觉 人工智能 对象(语法)
作者
M. F. Oliveira,Ricardo Cerqueira,João Ribeiro Pinto,Joaquim Fonseca,Luís F. Teixeira
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tiv.2024.3409409
摘要

Autonomous Vehicles aim to understand their surrounding environment by detecting relevant objects in the scene, which can be performed using a combination of sensors. The accurate prediction of pedestrians is a particularly challenging task, since the existing algorithms have more difficulty detecting small objects. This work studies and addresses this often overlooked problem by proposing Multimodal PointPillars (M-PP), a fast and effective novel fusion architecture for 3D object detection. Inspired by both MVX-Net and PointPillars, image features from a 2D CNN-based feature map are fused with the 3D point cloud in an early fusion architecture. By changing the heavy 3D convolutions of MVX-Net to a set of convolutional layers in 2D space, along with combining LiDAR and image information at an early stage, M-PP considerably improves inference time over the baseline, running at 28.49 Hz. It achieves inference speeds suitable for real-world applications while keeping the high performance of multimodal approaches. Extensive experiments show that our proposed architecture outperforms both MVX-Net and PointPillars for the pedestrian class in the KITTI 3D object detection dataset, with 62.78% in $AP_{BEV}$ (moderate difficulty), while also outperforming MVX-Net in the nuScenes dataset. Moreover, experiments were conducted to measure the detection performance based on object distance. The performance of M-PP surpassed other methods in pedestrian detection at any distance, particularly for faraway objects (more than 30 meters). Qualitative analysis shows that M-PP visibly outperformed MVX-Net for pedestrians and cyclists, while simultaneously making accurate predictions of cars.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助卖萌的秋田采纳,获得10
刚刚
沉舟完成签到,获得积分10
刚刚
中央戏精学院完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
MOMOTG发布了新的文献求助10
2秒前
2秒前
深情安青应助王慧颖采纳,获得10
2秒前
2秒前
qwe完成签到,获得积分10
2秒前
小番茄yuyu发布了新的文献求助10
2秒前
wonder发布了新的文献求助10
3秒前
3秒前
Charon发布了新的文献求助10
3秒前
3秒前
zhanghan发布了新的文献求助10
3秒前
小黎发布了新的文献求助10
3秒前
3秒前
4秒前
77发布了新的文献求助10
4秒前
赘婿应助爱搬玉米采纳,获得10
4秒前
带头大哥应助拼搏的黑夜采纳,获得10
5秒前
6秒前
Megan完成签到,获得积分10
6秒前
内向灵凡发布了新的文献求助10
6秒前
搜集达人应助Rlice采纳,获得10
6秒前
7秒前
8秒前
研友_n0GBAL发布了新的文献求助10
8秒前
dakjdia应助JMchiefEditor采纳,获得10
8秒前
爆米花应助Charon采纳,获得10
9秒前
zzy发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
刘茂云完成签到,获得积分10
10秒前
10秒前
tonyfountain发布了新的文献求助10
10秒前
Lucas应助kk采纳,获得10
10秒前
10秒前
糊涂的疾完成签到 ,获得积分10
10秒前
圆圆圆发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609