Heterogeneous selectivity and morphological evolution of marine clades during the Permian–Triassic mass extinction

生物集群灭绝 二叠纪 二叠纪-三叠纪灭绝事件 克莱德 古生物学 早三叠世 消光(光学矿物学) 地质学 进化生物学 生物 系统发育学 基因 人口学 生物扩散 人口 生物化学 构造盆地 社会学
作者
Xiaokang Liu,Haijun Song,Daoliang Chu,Xu Dai,Feng‐Yu Wang,Daniele Silvestro
出处
期刊:Nature Ecology and Evolution [Springer Nature]
卷期号:8 (7): 1248-1258 被引量:5
标识
DOI:10.1038/s41559-024-02438-0
摘要

Morphological disparity and taxonomic diversity are distinct measures of biodiversity, typically expected to evolve synergistically. However, evidence from mass extinctions indicates that they can be decoupled, and while mass extinctions lead to a drastic loss of diversity, their impact on disparity remains unclear. Here we evaluate the dynamics of morphological disparity and extinction selectivity across the Permian–Triassic mass extinction. We developed an automated approach, termed DeepMorph, for the extraction of morphological features from fossil images using a deep learning model and applied it to a high-resolution temporal dataset encompassing 599 genera across six marine clades. Ammonoids, brachiopods and ostracods experienced a selective loss of complex and ornamented forms, while bivalves, gastropods and conodonts did not experience morphologically selective extinctions. The presence and intensity of morphological selectivity probably reflect the variations in environmental tolerance thresholds among different clades. In clades affected by selective extinctions, the intensity of diversity loss promoted the loss of morphological disparity. Conversely, under non-selective extinctions, the magnitude of diversity loss had a negligible impact on disparity. Our results highlight that the Permian–Triassic mass extinction had heterogeneous morphological selective impacts across clades, offering new insights into how mass extinctions can reshape biodiversity and ecosystem structure. Using a deep learning method that extracts morphological features from images of marine fossils, the authors explore morphological disparity dynamics over a time series of 4 million years, spanning the Permian–Triassic mass extinction event.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助乐观的鸽子采纳,获得10
1秒前
萧狗子发布了新的文献求助10
1秒前
苦短发布了新的文献求助10
3秒前
cfplrbs完成签到,获得积分20
4秒前
7秒前
文静的绯完成签到,获得积分10
11秒前
万能图书馆应助thz采纳,获得10
12秒前
憨憨完成签到,获得积分10
13秒前
OLIVIA完成签到,获得积分10
13秒前
14秒前
wanci应助hh采纳,获得10
14秒前
14秒前
15秒前
hr完成签到 ,获得积分10
17秒前
小蘑菇应助sanjin采纳,获得10
17秒前
感动城发布了新的文献求助10
18秒前
ding应助112我的采纳,获得10
19秒前
19秒前
肘汁派发布了新的文献求助10
19秒前
19秒前
20秒前
留意完成签到,获得积分10
21秒前
Starry完成签到 ,获得积分10
21秒前
乔婉发布了新的文献求助10
21秒前
thz发布了新的文献求助10
23秒前
23秒前
乐观的鸽子完成签到,获得积分10
24秒前
Cashwa完成签到,获得积分10
24秒前
jinzhou发布了新的文献求助10
24秒前
oxs发布了新的文献求助10
24秒前
放青松完成签到,获得积分10
25秒前
25秒前
Chen完成签到,获得积分10
25秒前
27秒前
思源应助愉快的烤鸡采纳,获得10
27秒前
肘汁派完成签到,获得积分10
27秒前
陳拾壹完成签到,获得积分10
27秒前
金元宝完成签到,获得积分10
28秒前
vvcat关注了科研通微信公众号
28秒前
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456751
求助须知:如何正确求助?哪些是违规求助? 4563362
关于积分的说明 14289575
捐赠科研通 4487973
什么是DOI,文献DOI怎么找? 2458113
邀请新用户注册赠送积分活动 1448473
关于科研通互助平台的介绍 1424128