Probabilistic deep learning and transfer learning for robust cryptocurrency price prediction

计算机科学 数字加密货币 学习迁移 人工智能 概率逻辑 机器学习 集成学习 深度学习 传输(计算) 计量经济学 计算机安全 数学 并行计算
作者
Amin Golnari,Mohammad Hossein Komeili,Zahra Azizi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124404-124404
标识
DOI:10.1016/j.eswa.2024.124404
摘要

Forecasting the price of Bitcoin (BTC) with precision is a complex endeavor, given the market's inherent uncertainty and volatility, influenced by a diverse range of parameters. This research is driven by the central goal of introducing a specialized deep learning model tailored to predict digital currency prices, with a specific emphasis on BTC. To address this challenge, a pioneering strategy has been established, leveraging probabilistic gated recurrent units (P-GRU). This approach integrates probabilistic attributes into the model, facilitating the generation of probability distributions for projected values. The effectiveness of this method is assessed using one year of BTC price history, sampled at a five-minute interval. In parallel, a comparative analysis is conducted against alternative models, including GRU, long short-term memory (LSTM), and variants thereof (time-distributed, bidirectional, and simple models). In pursuit of optimizing model efficacy, a bespoke callback mechanism is deployed. This callback, driven by R2-score tracking, captures optimal model weights based on validation data. Moreover, a transfer learning paradigm is adopted to broaden the study's horizons. A pre-trained model on BTC data is harnessed to predict prices for six other prominent cryptocurrencies: Ethereum, Litecoin, Tron, Polkadot, Cardano, and Stellar. Consequently, a distinct model is tailored for each cryptocurrency. The outcomes of this investigation conclusively underscore the superior performance of the proposed methodology. In the midst of a volatile and uncertain market landscape, the proposed approach outshines its counterparts, showcasing an enhanced ability for cryptocurrency price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助yongon采纳,获得10
刚刚
1秒前
ttttttttttg完成签到,获得积分10
1秒前
2534165发布了新的文献求助10
1秒前
CodeCraft应助hd采纳,获得10
2秒前
大力日记本完成签到,获得积分10
3秒前
英俊的铭应助fnder采纳,获得10
6秒前
hd完成签到,获得积分20
7秒前
思维隋发布了新的文献求助10
7秒前
8秒前
10秒前
JamesPei应助韩亦馨采纳,获得10
11秒前
采姑娘的小蘑菇完成签到,获得积分20
11秒前
不吃橘子完成签到,获得积分10
11秒前
12秒前
gzf213完成签到,获得积分10
13秒前
清蒸鱼发布了新的文献求助10
14秒前
zing发布了新的文献求助10
14秒前
14秒前
布丁果冻发布了新的文献求助50
15秒前
小马甲应助狡猾的菠萝采纳,获得10
15秒前
16秒前
18秒前
重重重飞完成签到 ,获得积分10
18秒前
科研通AI5应助研ZZ采纳,获得10
19秒前
hd发布了新的文献求助10
21秒前
da发布了新的文献求助10
21秒前
Susam完成签到,获得积分10
22秒前
lan完成签到,获得积分10
22秒前
大个应助zing采纳,获得30
26秒前
李健应助lan采纳,获得10
27秒前
传奇3应助liaofr采纳,获得10
27秒前
27秒前
27秒前
yongon完成签到,获得积分10
28秒前
30秒前
fnder发布了新的文献求助10
31秒前
Jimmy发布了新的文献求助10
32秒前
32秒前
哈尔发布了新的文献求助10
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182