Probabilistic deep learning and transfer learning for robust cryptocurrency price prediction

计算机科学 数字加密货币 学习迁移 人工智能 概率逻辑 机器学习 集成学习 深度学习 传输(计算) 计量经济学 计算机安全 数学 并行计算
作者
Amin Golnari,Mohammad Hossein Komeili,Zahra Azizi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124404-124404
标识
DOI:10.1016/j.eswa.2024.124404
摘要

Forecasting the price of Bitcoin (BTC) with precision is a complex endeavor, given the market's inherent uncertainty and volatility, influenced by a diverse range of parameters. This research is driven by the central goal of introducing a specialized deep learning model tailored to predict digital currency prices, with a specific emphasis on BTC. To address this challenge, a pioneering strategy has been established, leveraging probabilistic gated recurrent units (P-GRU). This approach integrates probabilistic attributes into the model, facilitating the generation of probability distributions for projected values. The effectiveness of this method is assessed using one year of BTC price history, sampled at a five-minute interval. In parallel, a comparative analysis is conducted against alternative models, including GRU, long short-term memory (LSTM), and variants thereof (time-distributed, bidirectional, and simple models). In pursuit of optimizing model efficacy, a bespoke callback mechanism is deployed. This callback, driven by R2-score tracking, captures optimal model weights based on validation data. Moreover, a transfer learning paradigm is adopted to broaden the study's horizons. A pre-trained model on BTC data is harnessed to predict prices for six other prominent cryptocurrencies: Ethereum, Litecoin, Tron, Polkadot, Cardano, and Stellar. Consequently, a distinct model is tailored for each cryptocurrency. The outcomes of this investigation conclusively underscore the superior performance of the proposed methodology. In the midst of a volatile and uncertain market landscape, the proposed approach outshines its counterparts, showcasing an enhanced ability for cryptocurrency price forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助LV采纳,获得10
刚刚
俊逸凌雪完成签到,获得积分10
刚刚
于思枫发布了新的文献求助10
刚刚
piupiu完成签到,获得积分10
刚刚
科目三应助明123采纳,获得10
1秒前
CodeCraft应助风趣的天问采纳,获得10
1秒前
Akim应助琪筱采纳,获得10
1秒前
怪点衣衣完成签到,获得积分10
1秒前
LYSM应助LHS采纳,获得10
2秒前
2秒前
xy发布了新的文献求助10
3秒前
王拥军发布了新的文献求助10
3秒前
4秒前
小冰发布了新的文献求助10
4秒前
mll完成签到,获得积分10
4秒前
nn发布了新的文献求助20
5秒前
小雨哥完成签到,获得积分10
5秒前
秋秋完成签到 ,获得积分10
5秒前
ChenYX发布了新的文献求助10
7秒前
慕青应助Ethereal采纳,获得10
7秒前
nn应助yy采纳,获得10
7秒前
8秒前
杜宇完成签到,获得积分10
9秒前
Orange应助式微采纳,获得10
9秒前
9秒前
9秒前
maclogos发布了新的文献求助10
10秒前
迅速西装发布了新的文献求助30
10秒前
Wqian发布了新的文献求助10
11秒前
华仔应助风趣安寒采纳,获得10
12秒前
天天快乐应助风趣安寒采纳,获得10
12秒前
慕青应助风趣安寒采纳,获得10
12秒前
12秒前
小木发布了新的文献求助10
13秒前
13秒前
13秒前
情怀应助冰冰采纳,获得10
14秒前
小白完成签到,获得积分10
14秒前
今夜有雨发布了新的文献求助10
14秒前
悟空完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589341
求助须知:如何正确求助?哪些是违规求助? 4674104
关于积分的说明 14791759
捐赠科研通 4628240
什么是DOI,文献DOI怎么找? 2532262
邀请新用户注册赠送积分活动 1500881
关于科研通互助平台的介绍 1468438