CheckpointPx: A predictive radiology AI model of immune checkpoint inhibitor (ICI) benefit in non-small cell lung cancer (NSCLC).

医学 肺癌 肿瘤科 癌症研究 癌症 内科学 免疫系统 免疫学
作者
Seyoung Lee,Amogh Hiremath,Jeeyeon Lee,Haseok Kim,Kai Zhang,Salie Lee,Monica Yadav,Liam IL Young Chung,Hye Sung Kim,Trie Arni Djunadi,Yuchan Kim,Ilene Hong,Grace Kang,Amy Cho,Yury Velichko,Amit Gupta,Vamsidhar Velcheti,Anant Madabhushi,Nathaniel Braman,Young Kwang Chae
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): 8632-8632
标识
DOI:10.1200/jco.2024.42.16_suppl.8632
摘要

8632 Background: Immune checkpoint inhibitors (ICIs) have dramatically transformed the field of non-small cell lung cancer (NSCLC) treatment. Despite the widespread use of PD-L1 as a biomarker in NSCLC, it has significant limitations as a reliable predictive biomarker for ICI response. Addressing this limitation, we have developed CheckpointPx, a non-invasive radiology AI tool to assist in ICI treatment selection for patients using only baseline CT scans. Here we demonstrate that CheckpointPx can predict improved outcomes specific to treatment with ICIs, presenting a new tool to address the shortage of reliable predictive ICI biomarkers in NSCLC and ultimately improve outcomes for patients undergoing immunotherapeutic interventions. Methods: CheckpointPx (v1.11) was trained on pre-treatment CT scans to predict response to ICIs from training data (D1: n=252 ICI recipients) from three institutions (A-C). In this study, we evaluated its performance in predicting response in two validation cohorts: a Treatment Dataset of patients receiving immunotherapy (D2: n=224, institutions B-D) and a Control Dataset of patients receiving platinum-based chemotherapy alone (D3: n=76, institution B). The response was defined as disease control per RECIST v1.1. Experienced radiologists and physicians delineated target lesions, and a deep learning model segmented pulmonary vessels. From these segmented regions, radiomic features were extracted using the Picture Health Px platform and were used to generate a radiomics benefit score and corresponding benefit groups using D1. The ability of benefit groups to stratify patients by progression-free survival (PFS) was compared across D2 and D3 to evaluate its utility in identifying patients who would benefit from ICI over chemotherapy. Results: D2 and D3 contained a mix of treatment lines (1st-4th) and predominantly late-stage tumors (Stage 3/4, >85%). CheckpointPx included 16 features, such as measurements of intra-tumoral heterogeneity and vessel twistedness and branching patterns. Within the treatment dataset (D2), CheckpointPx was found to significantly stratify ICI patients by progression-free survival (PFS) with HR=0.68 (95% CI: 0.52 - 0.93, p=0.019). When applied to the control dataset, D3, benefit groups failed to stratify patients treated with chemotherapy by outcome (HR=0.91 [95% CI: 0.51-1.61], p=0.740), indicating that the signature was specific to ICI response. Conclusions: CheckpointPx demonstrated the ability to identify NSCLC patients who would benefit from ICI over chemo. The model’s association with PFS among ICI recipients, but not patients receiving chemotherapy alone, suggests that the signature is predictive of immunotherapy-related outcomes rather than generally prognostic. Additional independent, multi-site and prospective validation is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清冷渊完成签到 ,获得积分10
刚刚
ZHAOyifan完成签到,获得积分10
1秒前
1秒前
ding应助qing_li采纳,获得10
2秒前
虚心八宝粥应助华哥采纳,获得10
2秒前
斌城发布了新的文献求助10
2秒前
空白发布了新的文献求助10
4秒前
KK完成签到,获得积分10
4秒前
4秒前
4秒前
朴素山兰发布了新的文献求助10
4秒前
5秒前
是江江哥啊完成签到,获得积分10
5秒前
科研通AI2S应助朽木采纳,获得10
5秒前
张怡凯完成签到 ,获得积分10
6秒前
Wang完成签到 ,获得积分20
6秒前
6秒前
欣慰人生发布了新的文献求助10
6秒前
wocala完成签到,获得积分10
6秒前
飞龙爵士发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
浮游应助浮浮世世采纳,获得10
8秒前
在水一方应助局内人采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
斌城完成签到,获得积分10
11秒前
11秒前
drs发布了新的文献求助10
11秒前
lizi发布了新的文献求助10
12秒前
12秒前
12秒前
GREENP完成签到,获得积分10
13秒前
梅倪发布了新的文献求助10
13秒前
善学以致用应助lmg采纳,获得10
13秒前
范欣雨发布了新的文献求助10
14秒前
M_完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329006
求助须知:如何正确求助?哪些是违规求助? 4468593
关于积分的说明 13905951
捐赠科研通 4361665
什么是DOI,文献DOI怎么找? 2395876
邀请新用户注册赠送积分活动 1389356
关于科研通互助平台的介绍 1360146