亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CheckpointPx: A predictive radiology AI model of immune checkpoint inhibitor (ICI) benefit in non-small cell lung cancer (NSCLC).

医学 肺癌 肿瘤科 癌症研究 癌症 内科学 免疫系统 免疫学
作者
Seyoung Lee,Amogh Hiremath,Jeeyeon Lee,Haseok Kim,Kai Zhang,Salie Lee,Monica Yadav,Liam IL Young Chung,Hye Sung Kim,Trie Arni Djunadi,Yuchan Kim,Ilene Hong,Grace Kang,Amy Cho,Yury Velichko,Amit Gupta,Vamsidhar Velcheti,Anant Madabhushi,Nathaniel Braman,Young Kwang Chae
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): 8632-8632
标识
DOI:10.1200/jco.2024.42.16_suppl.8632
摘要

8632 Background: Immune checkpoint inhibitors (ICIs) have dramatically transformed the field of non-small cell lung cancer (NSCLC) treatment. Despite the widespread use of PD-L1 as a biomarker in NSCLC, it has significant limitations as a reliable predictive biomarker for ICI response. Addressing this limitation, we have developed CheckpointPx, a non-invasive radiology AI tool to assist in ICI treatment selection for patients using only baseline CT scans. Here we demonstrate that CheckpointPx can predict improved outcomes specific to treatment with ICIs, presenting a new tool to address the shortage of reliable predictive ICI biomarkers in NSCLC and ultimately improve outcomes for patients undergoing immunotherapeutic interventions. Methods: CheckpointPx (v1.11) was trained on pre-treatment CT scans to predict response to ICIs from training data (D1: n=252 ICI recipients) from three institutions (A-C). In this study, we evaluated its performance in predicting response in two validation cohorts: a Treatment Dataset of patients receiving immunotherapy (D2: n=224, institutions B-D) and a Control Dataset of patients receiving platinum-based chemotherapy alone (D3: n=76, institution B). The response was defined as disease control per RECIST v1.1. Experienced radiologists and physicians delineated target lesions, and a deep learning model segmented pulmonary vessels. From these segmented regions, radiomic features were extracted using the Picture Health Px platform and were used to generate a radiomics benefit score and corresponding benefit groups using D1. The ability of benefit groups to stratify patients by progression-free survival (PFS) was compared across D2 and D3 to evaluate its utility in identifying patients who would benefit from ICI over chemotherapy. Results: D2 and D3 contained a mix of treatment lines (1st-4th) and predominantly late-stage tumors (Stage 3/4, >85%). CheckpointPx included 16 features, such as measurements of intra-tumoral heterogeneity and vessel twistedness and branching patterns. Within the treatment dataset (D2), CheckpointPx was found to significantly stratify ICI patients by progression-free survival (PFS) with HR=0.68 (95% CI: 0.52 - 0.93, p=0.019). When applied to the control dataset, D3, benefit groups failed to stratify patients treated with chemotherapy by outcome (HR=0.91 [95% CI: 0.51-1.61], p=0.740), indicating that the signature was specific to ICI response. Conclusions: CheckpointPx demonstrated the ability to identify NSCLC patients who would benefit from ICI over chemo. The model’s association with PFS among ICI recipients, but not patients receiving chemotherapy alone, suggests that the signature is predictive of immunotherapy-related outcomes rather than generally prognostic. Additional independent, multi-site and prospective validation is warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助谭代涛采纳,获得10
21秒前
38秒前
59秒前
harrywoo发布了新的文献求助30
1分钟前
彭于晏应助真实的映寒采纳,获得10
1分钟前
loitinsuen完成签到,获得积分10
1分钟前
1分钟前
Jasper应助明芬采纳,获得10
1分钟前
酷波er应助harrywoo采纳,获得10
1分钟前
1分钟前
1分钟前
明芬发布了新的文献求助10
1分钟前
谭代涛发布了新的文献求助10
2分钟前
草木完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
明芬发布了新的文献求助10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
精明犀牛完成签到,获得积分10
3分钟前
3分钟前
vvsloy发布了新的文献求助10
3分钟前
lutos发布了新的文献求助10
3分钟前
精明犀牛发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Imran完成签到,获得积分10
4分钟前
4分钟前
CodeCraft应助真实的映寒采纳,获得10
4分钟前
在水一方应助谭代涛采纳,获得10
4分钟前
4分钟前
谭代涛发布了新的文献求助10
4分钟前
犬来八荒发布了新的文献求助30
5分钟前
小山己几完成签到,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
求求您啦完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599825
求助须知:如何正确求助?哪些是违规求助? 4685564
关于积分的说明 14838662
捐赠科研通 4671771
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946