CheckpointPx: A predictive radiology AI model of immune checkpoint inhibitor (ICI) benefit in non-small cell lung cancer (NSCLC).

医学 肺癌 肿瘤科 癌症研究 癌症 内科学 免疫系统 免疫学
作者
Seyoung Lee,Amogh Hiremath,Jeeyeon Lee,Haseok Kim,Kai Zhang,Salie Lee,Monica Yadav,Liam IL Young Chung,Hye Sung Kim,Trie Arni Djunadi,Yuchan Kim,Ilene Hong,Grace Kang,Amy Cho,Yury Velichko,Amit Gupta,Vamsidhar Velcheti,Anant Madabhushi,Nathaniel Braman,Young Kwang Chae
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:42 (16_suppl): 8632-8632
标识
DOI:10.1200/jco.2024.42.16_suppl.8632
摘要

8632 Background: Immune checkpoint inhibitors (ICIs) have dramatically transformed the field of non-small cell lung cancer (NSCLC) treatment. Despite the widespread use of PD-L1 as a biomarker in NSCLC, it has significant limitations as a reliable predictive biomarker for ICI response. Addressing this limitation, we have developed CheckpointPx, a non-invasive radiology AI tool to assist in ICI treatment selection for patients using only baseline CT scans. Here we demonstrate that CheckpointPx can predict improved outcomes specific to treatment with ICIs, presenting a new tool to address the shortage of reliable predictive ICI biomarkers in NSCLC and ultimately improve outcomes for patients undergoing immunotherapeutic interventions. Methods: CheckpointPx (v1.11) was trained on pre-treatment CT scans to predict response to ICIs from training data (D1: n=252 ICI recipients) from three institutions (A-C). In this study, we evaluated its performance in predicting response in two validation cohorts: a Treatment Dataset of patients receiving immunotherapy (D2: n=224, institutions B-D) and a Control Dataset of patients receiving platinum-based chemotherapy alone (D3: n=76, institution B). The response was defined as disease control per RECIST v1.1. Experienced radiologists and physicians delineated target lesions, and a deep learning model segmented pulmonary vessels. From these segmented regions, radiomic features were extracted using the Picture Health Px platform and were used to generate a radiomics benefit score and corresponding benefit groups using D1. The ability of benefit groups to stratify patients by progression-free survival (PFS) was compared across D2 and D3 to evaluate its utility in identifying patients who would benefit from ICI over chemotherapy. Results: D2 and D3 contained a mix of treatment lines (1st-4th) and predominantly late-stage tumors (Stage 3/4, >85%). CheckpointPx included 16 features, such as measurements of intra-tumoral heterogeneity and vessel twistedness and branching patterns. Within the treatment dataset (D2), CheckpointPx was found to significantly stratify ICI patients by progression-free survival (PFS) with HR=0.68 (95% CI: 0.52 - 0.93, p=0.019). When applied to the control dataset, D3, benefit groups failed to stratify patients treated with chemotherapy by outcome (HR=0.91 [95% CI: 0.51-1.61], p=0.740), indicating that the signature was specific to ICI response. Conclusions: CheckpointPx demonstrated the ability to identify NSCLC patients who would benefit from ICI over chemo. The model’s association with PFS among ICI recipients, but not patients receiving chemotherapy alone, suggests that the signature is predictive of immunotherapy-related outcomes rather than generally prognostic. Additional independent, multi-site and prospective validation is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小情绪完成签到 ,获得积分10
刚刚
孤独海蓝完成签到,获得积分10
刚刚
123完成签到 ,获得积分10
刚刚
1秒前
苏獭应助四火采纳,获得10
1秒前
li发布了新的文献求助10
1秒前
2秒前
2秒前
Ricardo完成签到,获得积分10
2秒前
ting发布了新的文献求助10
3秒前
3秒前
3秒前
zhangbei发布了新的文献求助20
4秒前
5秒前
xxywmt发布了新的文献求助10
5秒前
rayzhanghl完成签到,获得积分10
5秒前
充电宝应助等待的依风采纳,获得10
5秒前
顾矜应助研友_8DAv0L采纳,获得10
5秒前
笨笨垣发布了新的文献求助10
6秒前
tangz完成签到,获得积分20
6秒前
6秒前
zyx发布了新的文献求助20
7秒前
SYLH应助冷酷严青采纳,获得10
7秒前
科研yu完成签到,获得积分10
7秒前
tangz发布了新的文献求助10
9秒前
susancat完成签到,获得积分10
9秒前
桐桐应助宇宙超人007008采纳,获得10
9秒前
hxliu发布了新的文献求助10
9秒前
10秒前
相率而为伪者完成签到,获得积分10
10秒前
椿上春树发布了新的文献求助10
11秒前
淡然冬灵发布了新的文献求助10
11秒前
波波完成签到 ,获得积分10
11秒前
11秒前
12秒前
向乐瑶发布了新的文献求助10
14秒前
小马甲应助茉莉采纳,获得10
14秒前
小二郎应助ting采纳,获得10
16秒前
allah完成签到,获得积分10
16秒前
熏风完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412