CheckpointPx: A predictive radiology AI model of immune checkpoint inhibitor (ICI) benefit in non-small cell lung cancer (NSCLC).

医学 肺癌 肿瘤科 癌症研究 癌症 内科学 免疫系统 免疫学
作者
Seyoung Lee,Amogh Hiremath,Jeeyeon Lee,Haseok Kim,Kai Zhang,Salie Lee,Monica Yadav,Liam IL Young Chung,Hye Sung Kim,Trie Arni Djunadi,Yuchan Kim,Ilene Hong,Grace Kang,Amy Cho,Yury Velichko,Amit Gupta,Vamsidhar Velcheti,Anant Madabhushi,Nathaniel Braman,Young Kwang Chae
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): 8632-8632
标识
DOI:10.1200/jco.2024.42.16_suppl.8632
摘要

8632 Background: Immune checkpoint inhibitors (ICIs) have dramatically transformed the field of non-small cell lung cancer (NSCLC) treatment. Despite the widespread use of PD-L1 as a biomarker in NSCLC, it has significant limitations as a reliable predictive biomarker for ICI response. Addressing this limitation, we have developed CheckpointPx, a non-invasive radiology AI tool to assist in ICI treatment selection for patients using only baseline CT scans. Here we demonstrate that CheckpointPx can predict improved outcomes specific to treatment with ICIs, presenting a new tool to address the shortage of reliable predictive ICI biomarkers in NSCLC and ultimately improve outcomes for patients undergoing immunotherapeutic interventions. Methods: CheckpointPx (v1.11) was trained on pre-treatment CT scans to predict response to ICIs from training data (D1: n=252 ICI recipients) from three institutions (A-C). In this study, we evaluated its performance in predicting response in two validation cohorts: a Treatment Dataset of patients receiving immunotherapy (D2: n=224, institutions B-D) and a Control Dataset of patients receiving platinum-based chemotherapy alone (D3: n=76, institution B). The response was defined as disease control per RECIST v1.1. Experienced radiologists and physicians delineated target lesions, and a deep learning model segmented pulmonary vessels. From these segmented regions, radiomic features were extracted using the Picture Health Px platform and were used to generate a radiomics benefit score and corresponding benefit groups using D1. The ability of benefit groups to stratify patients by progression-free survival (PFS) was compared across D2 and D3 to evaluate its utility in identifying patients who would benefit from ICI over chemotherapy. Results: D2 and D3 contained a mix of treatment lines (1st-4th) and predominantly late-stage tumors (Stage 3/4, >85%). CheckpointPx included 16 features, such as measurements of intra-tumoral heterogeneity and vessel twistedness and branching patterns. Within the treatment dataset (D2), CheckpointPx was found to significantly stratify ICI patients by progression-free survival (PFS) with HR=0.68 (95% CI: 0.52 - 0.93, p=0.019). When applied to the control dataset, D3, benefit groups failed to stratify patients treated with chemotherapy by outcome (HR=0.91 [95% CI: 0.51-1.61], p=0.740), indicating that the signature was specific to ICI response. Conclusions: CheckpointPx demonstrated the ability to identify NSCLC patients who would benefit from ICI over chemo. The model’s association with PFS among ICI recipients, but not patients receiving chemotherapy alone, suggests that the signature is predictive of immunotherapy-related outcomes rather than generally prognostic. Additional independent, multi-site and prospective validation is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
linfordlu完成签到,获得积分0
2秒前
万能图书馆应助安史不乱采纳,获得10
2秒前
forest发布了新的文献求助10
4秒前
4秒前
YY完成签到 ,获得积分10
4秒前
Layace完成签到 ,获得积分10
6秒前
zho发布了新的文献求助10
6秒前
hyde完成签到,获得积分10
6秒前
nyfz2002完成签到,获得积分10
7秒前
光亮的幻柏完成签到,获得积分10
7秒前
十五完成签到,获得积分10
7秒前
Henry完成签到,获得积分10
8秒前
白色风车完成签到,获得积分10
9秒前
天璇完成签到,获得积分10
9秒前
zrj完成签到 ,获得积分10
11秒前
wushuimei完成签到 ,获得积分10
11秒前
ding应助tkdzjr12345采纳,获得10
11秒前
lixiangrui110发布了新的文献求助10
11秒前
丁小只完成签到,获得积分10
11秒前
从容的饭桶完成签到,获得积分10
12秒前
舒心小海豚完成签到 ,获得积分10
12秒前
FLY发布了新的文献求助10
12秒前
零度寂寞3166完成签到,获得积分10
12秒前
今后应助forest采纳,获得10
13秒前
chen完成签到 ,获得积分10
13秒前
橙子完成签到 ,获得积分10
13秒前
轻松柜子完成签到 ,获得积分10
14秒前
SSL完成签到,获得积分10
14秒前
方百招完成签到,获得积分10
14秒前
实验室同学完成签到,获得积分10
15秒前
风笛完成签到 ,获得积分10
16秒前
lixiangrui110完成签到,获得积分10
17秒前
土狗完成签到,获得积分10
17秒前
camillelizhaohe完成签到,获得积分10
17秒前
亦犹未进完成签到,获得积分10
17秒前
笨笨的凡梅完成签到 ,获得积分10
18秒前
Chris完成签到 ,获得积分0
19秒前
DMMM完成签到,获得积分10
19秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711424
捐赠科研通 2427554
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169