Evaluation of mechanical properties of porous media materials based on deep learning: Insights from pore structure

多孔介质 多孔性 材料科学 化学工程 纳米技术 复合材料 工程类
作者
Zhaodong Xi,Shuheng Tang,Songhang Zhang,Qi Yang,X. Wang
出处
期刊:Fuel [Elsevier]
卷期号:371: 131923-131923
标识
DOI:10.1016/j.fuel.2024.131923
摘要

Rock is a complex, porous medium, particularly evident in fine-grained sedimentary rocks such as shale, coal, and sandstone. These rocks are rich in oil and gas resources, and their developmental effectiveness hinges on mechanical properties. The mechanical properties of these sedimentary rocks vary widely, primarily due to their intricate pore structures. This study focuses on porous materials, taking shale as an example, and utilizes scanning electron microscopy to obtain numerous images depicting pore structures. It marks the inaugural application of the HRNet model for identifying pores in these images, achieving accurate and swift identification. This study also benchmarks the recognition accuracy against the U-Net model. Utilizing deep learning for pore recognition, Image J extracts the shape factor and Feret diameter to characterize the pore structure. Subsequently, RFPA software constructs microscopic models with varying pore structure parameters, indicating the pore structure's impact on mechanical properties. The findings revealed that the HRNet significantly outperforms U-Net in recognition accuracy, with a mean intersection over the union of 0.87, a pixel accuracy of 0.99, and an F1-score of 0.83. Employing the deconvolution method, the maximum Feret's diameter of pores primarily concentrates at 19.7, 41.2, and 168.2 nm, with shape factors predominantly at 0.89 and 0.67. The simulation results obtained from the uniaxial compression experiments showed that the content, size, and shape of pores significantly affect the mechanical properties. The research methodologies and outcomes of this study hold considerable potential for advancing the understanding of the pore structure and mechanical properties of porous media materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好发布了新的文献求助10
1秒前
重要初翠完成签到,获得积分10
4秒前
科研通AI2S应助nanonamo采纳,获得10
5秒前
风犬少年完成签到,获得积分10
6秒前
6秒前
Akim应助zhoutian采纳,获得10
7秒前
Lee完成签到,获得积分10
8秒前
从容芮应助鲤鱼鳞采纳,获得10
8秒前
9秒前
10秒前
11秒前
CipherSage应助顺心的水之采纳,获得10
12秒前
13秒前
15秒前
科研通AI2S应助nanonamo采纳,获得10
16秒前
18秒前
废寝忘食完成签到,获得积分10
18秒前
斯文败类应助晓森采纳,获得10
18秒前
18秒前
Yxy完成签到 ,获得积分10
20秒前
Cinde发布了新的文献求助10
20秒前
鲤鱼鳞完成签到,获得积分10
21秒前
wangererer关注了科研通微信公众号
23秒前
诚心的醉卉完成签到 ,获得积分10
24秒前
25秒前
titamisulydia发布了新的文献求助10
26秒前
科研通AI2S应助nanonamo采纳,获得10
27秒前
酒九发布了新的文献求助10
31秒前
sadascaqwqw完成签到 ,获得积分10
31秒前
31秒前
32秒前
胖虎完成签到,获得积分10
35秒前
猫只想发布了新的文献求助10
36秒前
37秒前
小酸奶完成签到,获得积分10
41秒前
44秒前
小龙女完成签到 ,获得积分10
44秒前
47秒前
48秒前
Pefdixe发布了新的文献求助10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870