Efficient Multi-agent Reinforcement Learning by Planning

强化学习 钢筋 计算机科学 人工智能 心理学 社会心理学
作者
Qihan Liu,Jianing Ye,Xiaoteng Ma,Jun Yang,Bin Liang,Chongjie Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.11778
摘要

Multi-agent reinforcement learning (MARL) algorithms have accomplished remarkable breakthroughs in solving large-scale decision-making tasks. Nonetheless, most existing MARL algorithms are model-free, limiting sample efficiency and hindering their applicability in more challenging scenarios. In contrast, model-based reinforcement learning (MBRL), particularly algorithms integrating planning, such as MuZero, has demonstrated superhuman performance with limited data in many tasks. Hence, we aim to boost the sample efficiency of MARL by adopting model-based approaches. However, incorporating planning and search methods into multi-agent systems poses significant challenges. The expansive action space of multi-agent systems often necessitates leveraging the nearly-independent property of agents to accelerate learning. To tackle this issue, we propose the MAZero algorithm, which combines a centralized model with Monte Carlo Tree Search (MCTS) for policy search. We design a novel network structure to facilitate distributed execution and parameter sharing. To enhance search efficiency in deterministic environments with sizable action spaces, we introduce two novel techniques: Optimistic Search Lambda (OS($\lambda$)) and Advantage-Weighted Policy Optimization (AWPO). Extensive experiments on the SMAC benchmark demonstrate that MAZero outperforms model-free approaches in terms of sample efficiency and provides comparable or better performance than existing model-based methods in terms of both sample and computational efficiency. Our code is available at https://github.com/liuqh16/MAZero.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Doctor_Peng完成签到,获得积分10
2秒前
future完成签到 ,获得积分10
3秒前
3秒前
明亮不乐完成签到,获得积分20
3秒前
3秒前
Lm完成签到,获得积分10
5秒前
5秒前
syy发布了新的文献求助10
5秒前
田様应助abao采纳,获得10
6秒前
7秒前
8秒前
小杨发布了新的文献求助10
8秒前
keyanli发布了新的文献求助10
8秒前
htlz完成签到,获得积分10
10秒前
什么时候毕业就改名字完成签到,获得积分20
10秒前
香蕉觅云应助yu采纳,获得10
11秒前
科研通AI5应助喜悦非笑采纳,获得10
11秒前
yang完成签到,获得积分10
11秒前
12秒前
科研小趴菜完成签到 ,获得积分10
12秒前
13秒前
威武灵阳完成签到,获得积分10
14秒前
离子完成签到,获得积分10
16秒前
16秒前
LU发布了新的文献求助10
17秒前
科研通AI5应助玉尔采纳,获得10
18秒前
18秒前
19秒前
20秒前
22秒前
好远加身发布了新的文献求助10
23秒前
23秒前
迅速友容完成签到 ,获得积分10
24秒前
曾经书翠发布了新的文献求助10
24秒前
24秒前
科研通AI5应助charles采纳,获得10
25秒前
Lucas应助chigga采纳,获得10
25秒前
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728757
求助须知:如何正确求助?哪些是违规求助? 3273785
关于积分的说明 9983412
捐赠科研通 2989116
什么是DOI,文献DOI怎么找? 1640181
邀请新用户注册赠送积分活动 779094
科研通“疑难数据库(出版商)”最低求助积分说明 747961