氧化磷酸化
癌细胞
癌症
糖酵解
癌症研究
乳腺癌
厌氧糖酵解
细胞外
细胞培养
上皮-间质转换
生物
化学
转移
新陈代谢
内科学
生物化学
医学
遗传学
作者
Sheikh Mohammad Umar,Arundhathi Dev,Akanksha Kashyap,Meetu Rathee,Shyam S. Chauhan,Atul Sharma,Chandra Prakash Prasad
摘要
Abstract Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta‐analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA‐MB‐231) with sodium L‐lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L‐lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI