Multi‐modal segmentation with missing image data for automatic delineation of gross tumor volumes in head and neck cancers

分割 人工智能 模态(人机交互) 正电子发射断层摄影术 计算机科学 深度学习 头颈部 医学 空白 核医学 模式识别(心理学) 计算机视觉 外科 机械工程 工程类
作者
Yao Zhao,Xin Wang,Jack Phan,Xinru Chen,Anna Lee,Cenji Yu,Kai Huang,Laurence E. Court,Tinsu Pan,He Wang,Kareem A. Wahid,Abdalah S.R. Mohamed,Mohamed A. Naser,Clifton D. Fuller,Jinzhong Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17260
摘要

Abstract Background Head and neck (HN) gross tumor volume (GTV) auto‐segmentation is challenging due to the morphological complexity and low image contrast of targets. Multi‐modality images, including computed tomography (CT) and positron emission tomography (PET), are used in the routine clinic to assist radiation oncologists for accurate GTV delineation. However, the availability of PET imaging may not always be guaranteed. Purpose To develop a deep learning segmentation framework for automated GTV delineation of HN cancers using a combination of PET/CT images, while addressing the challenge of missing PET data. Methods Two datasets were included for this study: Dataset I: 524 (training) and 359 (testing) oropharyngeal cancer patients from different institutions with their PET/CT pairs provided by the HECKTOR Challenge; Dataset II: 90 HN patients(testing) from a local institution with their planning CT, PET/CT pairs. To handle potentially missing PET images, a model training strategy named the “Blank Channel” method was implemented. To simulate the absence of a PET image, a blank array with the same dimensions as the CT image was generated to meet the dual‐channel input requirement of the deep learning model. During the model training process, the model was randomly presented with either a real PET/CT pair or a blank/CT pair. This allowed the model to learn the relationship between the CT image and the corresponding GTV delineation based on available modalities. As a result, our model had the ability to handle flexible inputs during prediction, making it suitable for cases where PET images are missing. To evaluate the performance of our proposed model, we trained it using training patients from Dataset I and tested it with Dataset II. We compared our model (Model 1) with two other models which were trained for specific modality segmentations: Model 2 trained with only CT images, and Model 3 trained with real PET/CT pairs. The performance of the models was evaluated using quantitative metrics, including Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff Distance (HD95). In addition, we evaluated our Model 1 and Model 3 using the 359 test cases in Dataset I. Results Our proposed model(Model 1) achieved promising results for GTV auto‐segmentation using PET/CT images, with the flexibility of missing PET images. Specifically, when assessed with only CT images in Dataset II, Model 1 achieved DSC of 0.56 ± 0.16, MSD of 3.4 ± 2.1 mm, and HD95 of 13.9 ± 7.6 mm. When the PET images were included, the performance of our model was improved to DSC of 0.62 ± 0.14, MSD of 2.8 ± 1.7 mm, and HD95 of 10.5 ± 6.5 mm. These results are comparable to those achieved by Model 2 and Model 3, illustrating Model 1′s effectiveness in utilizing flexible input modalities. Further analysis using the test dataset from Dataset I showed that Model 1 achieved an average DSC of 0.77, surpassing the overall average DSC of 0.72 among all participants in the HECKTOR Challenge. Conclusions We successfully refined a multi‐modal segmentation tool for accurate GTV delineation for HN cancer. Our method addressed the issue of missing PET images by allowing flexible data input, thereby providing a practical solution for clinical settings where access to PET imaging may be limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DONNYTIO完成签到,获得积分10
1秒前
鲸落发布了新的文献求助20
2秒前
啦啦啦发布了新的文献求助10
2秒前
3秒前
bkagyin应助Shanshan采纳,获得150
3秒前
隐形之玉发布了新的文献求助10
4秒前
YY完成签到 ,获得积分10
5秒前
南上完成签到,获得积分10
6秒前
8秒前
9秒前
秀丽白凝完成签到,获得积分20
9秒前
Hululu完成签到 ,获得积分10
10秒前
大智若于完成签到 ,获得积分10
10秒前
HH应助香烟小厨采纳,获得10
10秒前
lhuh完成签到,获得积分20
11秒前
cjj完成签到,获得积分10
13秒前
winterm发布了新的文献求助10
14秒前
taozhiqi完成签到 ,获得积分10
16秒前
冷傲老九完成签到,获得积分10
17秒前
xiangzq完成签到,获得积分10
17秒前
隐形曼青应助隐形之玉采纳,获得10
17秒前
19秒前
0x1orz完成签到,获得积分10
20秒前
研友_Z1x9ln完成签到,获得积分10
23秒前
27秒前
yehaidadao完成签到,获得积分10
28秒前
111发布了新的文献求助10
30秒前
hj456完成签到,获得积分10
31秒前
31秒前
SIRT1发布了新的文献求助10
31秒前
36秒前
泡泡驳回了今后应助
37秒前
NexusExplorer应助SIRT1采纳,获得10
38秒前
0128lun完成签到,获得积分10
38秒前
lhuh发布了新的文献求助10
39秒前
kyt完成签到 ,获得积分10
39秒前
隐形之玉发布了新的文献求助10
40秒前
yaoccccchen完成签到,获得积分10
41秒前
zhaoyang完成签到 ,获得积分10
41秒前
111完成签到,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023