Multi‐modal segmentation with missing image data for automatic delineation of gross tumor volumes in head and neck cancers

分割 人工智能 模态(人机交互) 正电子发射断层摄影术 计算机科学 深度学习 头颈部 医学 空白 核医学 模式识别(心理学) 计算机视觉 机械工程 工程类 外科
作者
Yao Zhao,Xin Wang,Jack Phan,Xinru Chen,Anna Lee,Cenji Yu,Kai Huang,Laurence E. Court,Tinsu Pan,He Wang,Kareem A. Wahid,Abdalah S.R. Mohamed,Mohamed A. Naser,Clifton D. Fuller,Jinzhong Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17260
摘要

Abstract Background Head and neck (HN) gross tumor volume (GTV) auto‐segmentation is challenging due to the morphological complexity and low image contrast of targets. Multi‐modality images, including computed tomography (CT) and positron emission tomography (PET), are used in the routine clinic to assist radiation oncologists for accurate GTV delineation. However, the availability of PET imaging may not always be guaranteed. Purpose To develop a deep learning segmentation framework for automated GTV delineation of HN cancers using a combination of PET/CT images, while addressing the challenge of missing PET data. Methods Two datasets were included for this study: Dataset I: 524 (training) and 359 (testing) oropharyngeal cancer patients from different institutions with their PET/CT pairs provided by the HECKTOR Challenge; Dataset II: 90 HN patients(testing) from a local institution with their planning CT, PET/CT pairs. To handle potentially missing PET images, a model training strategy named the “Blank Channel” method was implemented. To simulate the absence of a PET image, a blank array with the same dimensions as the CT image was generated to meet the dual‐channel input requirement of the deep learning model. During the model training process, the model was randomly presented with either a real PET/CT pair or a blank/CT pair. This allowed the model to learn the relationship between the CT image and the corresponding GTV delineation based on available modalities. As a result, our model had the ability to handle flexible inputs during prediction, making it suitable for cases where PET images are missing. To evaluate the performance of our proposed model, we trained it using training patients from Dataset I and tested it with Dataset II. We compared our model (Model 1) with two other models which were trained for specific modality segmentations: Model 2 trained with only CT images, and Model 3 trained with real PET/CT pairs. The performance of the models was evaluated using quantitative metrics, including Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff Distance (HD95). In addition, we evaluated our Model 1 and Model 3 using the 359 test cases in Dataset I. Results Our proposed model(Model 1) achieved promising results for GTV auto‐segmentation using PET/CT images, with the flexibility of missing PET images. Specifically, when assessed with only CT images in Dataset II, Model 1 achieved DSC of 0.56 ± 0.16, MSD of 3.4 ± 2.1 mm, and HD95 of 13.9 ± 7.6 mm. When the PET images were included, the performance of our model was improved to DSC of 0.62 ± 0.14, MSD of 2.8 ± 1.7 mm, and HD95 of 10.5 ± 6.5 mm. These results are comparable to those achieved by Model 2 and Model 3, illustrating Model 1′s effectiveness in utilizing flexible input modalities. Further analysis using the test dataset from Dataset I showed that Model 1 achieved an average DSC of 0.77, surpassing the overall average DSC of 0.72 among all participants in the HECKTOR Challenge. Conclusions We successfully refined a multi‐modal segmentation tool for accurate GTV delineation for HN cancer. Our method addressed the issue of missing PET images by allowing flexible data input, thereby providing a practical solution for clinical settings where access to PET imaging may be limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
深情安青应助机智的青槐采纳,获得10
3秒前
茶茶发布了新的文献求助10
3秒前
szl发布了新的文献求助10
3秒前
Lucas应助京阿尼采纳,获得10
4秒前
甜甜晓露完成签到,获得积分10
5秒前
科研通AI5应助qifa采纳,获得10
5秒前
shrike完成签到 ,获得积分10
5秒前
有魅力白开水完成签到,获得积分20
5秒前
小蒲完成签到 ,获得积分10
6秒前
万能图书馆应助大力鱼采纳,获得10
6秒前
7秒前
Rrr发布了新的文献求助10
8秒前
跳跃的静曼完成签到,获得积分10
8秒前
丰富的不惜完成签到,获得积分10
9秒前
10秒前
wfc完成签到,获得积分10
10秒前
浅梨涡完成签到 ,获得积分10
12秒前
JamesPei应助椰子熟了耶采纳,获得20
13秒前
hanyang965发布了新的文献求助10
13秒前
orixero应助喵呜采纳,获得10
13秒前
13秒前
13秒前
14秒前
en发布了新的文献求助10
14秒前
15秒前
白宝宝北北白应助氕氘氚采纳,获得10
15秒前
16秒前
进取拼搏完成签到,获得积分10
16秒前
hehsk完成签到,获得积分10
16秒前
无限鞅完成签到,获得积分20
16秒前
17秒前
DY完成签到 ,获得积分10
18秒前
郑仕完成签到,获得积分10
18秒前
18秒前
进取拼搏发布了新的文献求助10
19秒前
顺顺发布了新的文献求助10
19秒前
19秒前
在水一方应助涛涛采纳,获得10
19秒前
英姑应助义气的傲松采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808