Online interpretable dynamic prediction models for clinically significant posthepatectomy liver failure based on machine learning algorithms: A retrospective cohort study

医学 回顾性队列研究 算法 肝切除术 肌酐 终末期肝病模型 人工神经网络 肝衰竭 人工智能 机器学习 外科 统计 内科学 切除术 数学 肝移植 计算机科学 移植
作者
Yuzhan Jin,Wanxia Li,Yachen Wu,Qian Wang,Zhiqiang Xiang,Zhangtao Long,Hao Liang,Jianjun Zou,Zhu Zhu,Jianjun Zou
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000001764
摘要

Background: Posthepatectomy liver failure (PHLF) is the leading cause of mortality in patients undergoing hepatectomy. However, practical models for accurately predicting the risk of PHLF are lacking. This study aimed to develop precise prediction models for clinically significant PHLF. Methods: A total of 226 patients undergoing hepatectomy at a single center were recruited. The study outcome was clinically significant PHLF. Five pre- and postoperative machine learning (ML) models were developed and compared with four clinical scores, namely, the MELD, FIB-4, ALBI, and APRI scores. The robustness of the developed ML models was internally validated using 5-fold cross-validation by calculating the average of the evaluation metrics and was externally validated on an independent temporal dataset, including the area under the curve (AUC) and the area under the precision‒recall curve (AUPRC). SHapley Additive exPlanations analysis was performed to interpret the best performance model. Results: Clinically significant PHLF was observed in 23 of 226 patients (10.2%). The variables in the preoperative model included creatinine, total bilirubin, and Child‒Pugh grade. In addition to the above factors, the extent of resection was also a key variable for the postoperative model. The pre- and postoperative artificial neural network (ANN) models exhibited excellent performance, with mean AUCs of 0.766 and 0.851, respectively, and mean AUPRC values of 0.441 and 0.645, whereas the MELD, FIB-4, ALBI, and APRI scores reached AUCs of 0.714, 0.498, 0.536 and 0.551, respectively, and AUPRC values of 0.204, 0.111, 0.128 and 0.163, respectively. In addition, the AUCs of the pre- and postoperative ANN models were 0.720 and 0.731, respectively, and the AUPRC values were 0.380 and 0.408, respectively, on the temporal dataset. Conclusion: Our online interpretable dynamic ML models outperformed common clinical scores and could function as a clinical decision support tool to identify patients at high risk of PHLF pre- and postoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHHAN发布了新的文献求助10
1秒前
威武的沂完成签到,获得积分10
6秒前
8秒前
9秒前
11秒前
笨笨青筠完成签到 ,获得积分10
14秒前
mengmenglv完成签到 ,获得积分0
14秒前
Tonald Yang完成签到 ,获得积分20
17秒前
18秒前
落后的怀梦完成签到 ,获得积分10
19秒前
陈坤完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
斯文败类应助zgx采纳,获得10
24秒前
默默完成签到 ,获得积分10
24秒前
KY Mr.WANG完成签到,获得积分10
24秒前
38秒前
guoxingliu完成签到,获得积分10
42秒前
50秒前
阳佟水蓉完成签到,获得积分10
51秒前
gdgd完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
56秒前
叮叮当当完成签到,获得积分10
58秒前
1分钟前
1分钟前
电致阿光完成签到,获得积分10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
1分钟前
zgx发布了新的文献求助10
1分钟前
i2stay完成签到,获得积分10
1分钟前
馒头完成签到,获得积分10
1分钟前
MS903完成签到,获得积分10
1分钟前
CJW完成签到 ,获得积分10
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
mmd完成签到 ,获得积分10
1分钟前
七一安完成签到 ,获得积分10
1分钟前
浪麻麻完成签到 ,获得积分10
1分钟前
包容的剑完成签到 ,获得积分10
1分钟前
等待的大炮完成签到,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
Chem34完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022