Online interpretable dynamic prediction models for clinically significant posthepatectomy liver failure based on machine learning algorithms: A retrospective cohort study

医学 回顾性队列研究 算法 肝切除术 肌酐 终末期肝病模型 人工神经网络 肝衰竭 人工智能 机器学习 外科 统计 内科学 切除术 数学 肝移植 计算机科学 移植
作者
Yuzhan Jin,Wanxia Li,Yachen Wu,Qian Wang,Zhiqiang Xiang,Zhangtao Long,Hao Liang,Jianjun Zou,Zhu Zhu,Jianjun Zou
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000001764
摘要

Background: Posthepatectomy liver failure (PHLF) is the leading cause of mortality in patients undergoing hepatectomy. However, practical models for accurately predicting the risk of PHLF are lacking. This study aimed to develop precise prediction models for clinically significant PHLF. Methods: A total of 226 patients undergoing hepatectomy at a single center were recruited. The study outcome was clinically significant PHLF. Five pre- and postoperative machine learning (ML) models were developed and compared with four clinical scores, namely, the MELD, FIB-4, ALBI, and APRI scores. The robustness of the developed ML models was internally validated using 5-fold cross-validation by calculating the average of the evaluation metrics and was externally validated on an independent temporal dataset, including the area under the curve (AUC) and the area under the precision‒recall curve (AUPRC). SHapley Additive exPlanations analysis was performed to interpret the best performance model. Results: Clinically significant PHLF was observed in 23 of 226 patients (10.2%). The variables in the preoperative model included creatinine, total bilirubin, and Child‒Pugh grade. In addition to the above factors, the extent of resection was also a key variable for the postoperative model. The pre- and postoperative artificial neural network (ANN) models exhibited excellent performance, with mean AUCs of 0.766 and 0.851, respectively, and mean AUPRC values of 0.441 and 0.645, whereas the MELD, FIB-4, ALBI, and APRI scores reached AUCs of 0.714, 0.498, 0.536 and 0.551, respectively, and AUPRC values of 0.204, 0.111, 0.128 and 0.163, respectively. In addition, the AUCs of the pre- and postoperative ANN models were 0.720 and 0.731, respectively, and the AUPRC values were 0.380 and 0.408, respectively, on the temporal dataset. Conclusion: Our online interpretable dynamic ML models outperformed common clinical scores and could function as a clinical decision support tool to identify patients at high risk of PHLF pre- and postoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小发布了新的文献求助30
1秒前
CodeCraft应助苗条梦玉采纳,获得10
2秒前
jia完成签到 ,获得积分10
3秒前
6秒前
6秒前
7秒前
Ava应助坚定路人采纳,获得10
9秒前
11秒前
12秒前
潘善若发布了新的文献求助10
12秒前
戴岱发布了新的文献求助10
14秒前
15秒前
16秒前
momo发布了新的文献求助10
18秒前
大模型应助潘善若采纳,获得10
18秒前
19秒前
jolt发布了新的文献求助10
20秒前
21秒前
传奇3应助戴岱采纳,获得10
22秒前
nini完成签到,获得积分10
24秒前
zzzjh发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
27秒前
28秒前
nini发布了新的文献求助10
31秒前
Lucas应助XAN采纳,获得10
32秒前
潘善若发布了新的文献求助10
32秒前
棠棠完成签到 ,获得积分10
32秒前
35秒前
yyer完成签到,获得积分10
35秒前
37秒前
FashionBoy应助潘善若采纳,获得10
38秒前
慕青应助忐忑的阑香采纳,获得10
38秒前
momo发布了新的文献求助10
39秒前
冰淇淋完成签到,获得积分10
39秒前
XylonYu完成签到,获得积分10
40秒前
42秒前
坚定路人发布了新的文献求助10
44秒前
张宁波完成签到,获得积分0
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158