Online interpretable dynamic prediction models for clinically significant posthepatectomy liver failure based on machine learning algorithms: A retrospective cohort study

医学 回顾性队列研究 算法 肝切除术 肌酐 终末期肝病模型 人工神经网络 肝衰竭 人工智能 机器学习 外科 统计 内科学 切除术 数学 肝移植 计算机科学 移植
作者
Yuzhan Jin,Wanxia Li,Yachen Wu,Qian Wang,Zhiqiang Xiang,Zhangtao Long,Hao Liang,Jianjun Zou,Zhu Zhu,Jianjun Zou
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001764
摘要

Background: Posthepatectomy liver failure (PHLF) is the leading cause of mortality in patients undergoing hepatectomy. However, practical models for accurately predicting the risk of PHLF are lacking. This study aimed to develop precise prediction models for clinically significant PHLF. Methods: A total of 226 patients undergoing hepatectomy at a single center were recruited. The study outcome was clinically significant PHLF. Five pre- and postoperative machine learning (ML) models were developed and compared with four clinical scores, namely, the MELD, FIB-4, ALBI, and APRI scores. The robustness of the developed ML models was internally validated using 5-fold cross-validation by calculating the average of the evaluation metrics and was externally validated on an independent temporal dataset, including the area under the curve (AUC) and the area under the precision‒recall curve (AUPRC). SHapley Additive exPlanations analysis was performed to interpret the best performance model. Results: Clinically significant PHLF was observed in 23 of 226 patients (10.2%). The variables in the preoperative model included creatinine, total bilirubin, and Child‒Pugh grade. In addition to the above factors, the extent of resection was also a key variable for the postoperative model. The pre- and postoperative artificial neural network (ANN) models exhibited excellent performance, with mean AUCs of 0.766 and 0.851, respectively, and mean AUPRC values of 0.441 and 0.645, whereas the MELD, FIB-4, ALBI, and APRI scores reached AUCs of 0.714, 0.498, 0.536 and 0.551, respectively, and AUPRC values of 0.204, 0.111, 0.128 and 0.163, respectively. In addition, the AUCs of the pre- and postoperative ANN models were 0.720 and 0.731, respectively, and the AUPRC values were 0.380 and 0.408, respectively, on the temporal dataset. Conclusion: Our online interpretable dynamic ML models outperformed common clinical scores and could function as a clinical decision support tool to identify patients at high risk of PHLF pre- and postoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到 ,获得积分10
1秒前
小乙猪完成签到 ,获得积分0
4秒前
结实的半双完成签到,获得积分10
5秒前
minuxSCI完成签到,获得积分10
10秒前
困困困完成签到 ,获得积分10
11秒前
btcat完成签到,获得积分10
14秒前
008完成签到 ,获得积分10
14秒前
打打应助暄anbujun采纳,获得10
26秒前
林好人完成签到,获得积分10
31秒前
林沐发布了新的文献求助10
35秒前
天真的莺完成签到,获得积分10
42秒前
木光完成签到,获得积分20
46秒前
独特的孤丹完成签到 ,获得积分10
46秒前
46秒前
康2000发布了新的文献求助30
53秒前
丽丽完成签到 ,获得积分10
53秒前
知否完成签到 ,获得积分10
57秒前
欢呼的茗茗完成签到 ,获得积分10
1分钟前
白菜完成签到 ,获得积分10
1分钟前
拼搏山槐完成签到 ,获得积分10
1分钟前
康2000完成签到,获得积分10
1分钟前
1分钟前
赘婿应助trussie采纳,获得10
1分钟前
bblv完成签到 ,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
磕学家完成签到 ,获得积分10
1分钟前
磕学家关注了科研通微信公众号
1分钟前
woshiwuziq完成签到 ,获得积分10
1分钟前
ovood完成签到 ,获得积分10
1分钟前
1分钟前
月亮完成签到 ,获得积分10
1分钟前
zodiac完成签到,获得积分10
1分钟前
诸沧海发布了新的文献求助10
1分钟前
上善若水呦完成签到 ,获得积分10
1分钟前
大力小萱完成签到,获得积分10
2分钟前
美满的皮卡丘完成签到 ,获得积分10
2分钟前
Hank完成签到 ,获得积分10
2分钟前
搜集达人应助大力小萱采纳,获得10
2分钟前
每天学习一点点完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068290
求助须知:如何正确求助?哪些是违规求助? 2722176
关于积分的说明 7476094
捐赠科研通 2369177
什么是DOI,文献DOI怎么找? 1256228
科研通“疑难数据库(出版商)”最低求助积分说明 609524
版权声明 596835