A joint entity Relation Extraction method for document level Traditional Chinese Medicine texts

计算机科学 关系抽取 词典 自然语言处理 人工智能 关系(数据库) 图形 情报检索 卷积神经网络 信息抽取 编码(社会科学) 命名实体识别 任务(项目管理) 数据挖掘 理论计算机科学 统计 数学 管理 经济
作者
Wenxuan Xu,Lin Wang,Mingchuan Zhang,Junlong Zhu,Junqiang Yan,Qingtao Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102915-102915 被引量:2
标识
DOI:10.1016/j.artmed.2024.102915
摘要

Chinese medicine is a unique and complex medical system with complete and rich scientific theories. The textual data of Traditional Chinese Medicine (TCM) contains a large amount of relevant knowledge in the field of TCM, which can serve as guidance for accurate disease diagnosis as well as efficient disease prevention and treatment. Existing TCM texts are disorganized and lack a uniform standard. For this reason, this paper proposes a joint extraction framework by using graph convolutional networks to extract joint entity relations on document-level TCM texts to achieve TCM entity relation mining. More specifically, we first finetune the pre-trained language model by using the TCM domain knowledge to obtain the task-specific model. Taking the integrity of TCM into account, we extract the complete entities as well as the relations corresponding to diagnosis and treatment from the document-level medical cases by using multiple features such as word fusion coding, TCM lexicon information, and multi-relational graph convolutional networks. The experimental results show that the proposed method outperforms the state-of-the-art methods. It has an F1-score of 90.7% for Name Entity Recognization and 76.14% for Relation Extraction on the TCM dataset, which significantly improves the ability to extract entity relations from TCM texts. Code is available at https://github.com/xxxxwx/TCMERE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闹心发布了新的文献求助20
刚刚
chen2005133发布了新的文献求助10
1秒前
3秒前
好滴捏发布了新的文献求助10
4秒前
机智念芹完成签到,获得积分10
5秒前
6秒前
7秒前
我不困发布了新的文献求助10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
奥特超曼应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
Ricey应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
U9A发布了新的文献求助10
13秒前
崔佳鑫完成签到 ,获得积分10
13秒前
李鱼丸发布了新的文献求助10
15秒前
honglingjing完成签到,获得积分10
15秒前
谢朝邦完成签到 ,获得积分10
16秒前
Hello应助爸爸_爸爸_帮帮我采纳,获得10
16秒前
yun4发布了新的文献求助10
17秒前
请叫我风吹麦浪应助8023采纳,获得10
19秒前
19秒前
李白完成签到,获得积分10
22秒前
英俊的铭应助糟糕的尔云采纳,获得10
22秒前
爸爸_爸爸_帮帮我完成签到,获得积分10
22秒前
sizhelin发布了新的文献求助10
24秒前
请叫我风吹麦浪应助MITNO1采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993660
求助须知:如何正确求助?哪些是违规求助? 3534375
关于积分的说明 11265355
捐赠科研通 3274133
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712