已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A joint entity Relation Extraction method for document level Traditional Chinese Medicine texts

计算机科学 关系抽取 词典 自然语言处理 人工智能 关系(数据库) 图形 情报检索 卷积神经网络 信息抽取 编码(社会科学) 命名实体识别 任务(项目管理) 数据挖掘 理论计算机科学 统计 数学 管理 经济
作者
Wenxuan Xu,Lin Wang,Mingchuan Zhang,Junlong Zhu,Junqiang Yan,Qingtao Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:154: 102915-102915 被引量:6
标识
DOI:10.1016/j.artmed.2024.102915
摘要

Chinese medicine is a unique and complex medical system with complete and rich scientific theories. The textual data of Traditional Chinese Medicine (TCM) contains a large amount of relevant knowledge in the field of TCM, which can serve as guidance for accurate disease diagnosis as well as efficient disease prevention and treatment. Existing TCM texts are disorganized and lack a uniform standard. For this reason, this paper proposes a joint extraction framework by using graph convolutional networks to extract joint entity relations on document-level TCM texts to achieve TCM entity relation mining. More specifically, we first finetune the pre-trained language model by using the TCM domain knowledge to obtain the task-specific model. Taking the integrity of TCM into account, we extract the complete entities as well as the relations corresponding to diagnosis and treatment from the document-level medical cases by using multiple features such as word fusion coding, TCM lexicon information, and multi-relational graph convolutional networks. The experimental results show that the proposed method outperforms the state-of-the-art methods. It has an F1-score of 90.7% for Name Entity Recognization and 76.14% for Relation Extraction on the TCM dataset, which significantly improves the ability to extract entity relations from TCM texts. Code is available at https://github.com/xxxxwx/TCMERE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
Pan完成签到,获得积分10
刚刚
刚刚
魔幻冰棍完成签到 ,获得积分10
2秒前
兔兔完成签到,获得积分10
2秒前
哈哈Steven完成签到,获得积分10
2秒前
finale71完成签到 ,获得积分10
2秒前
深夜emo哥发布了新的文献求助10
3秒前
4秒前
没有查不到的文献完成签到,获得积分10
4秒前
元骏发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
5秒前
奕雨完成签到,获得积分10
5秒前
5秒前
joysa完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
zyx应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502327
求助须知:如何正确求助?哪些是违规求助? 4598289
关于积分的说明 14463432
捐赠科研通 4531834
什么是DOI,文献DOI怎么找? 2483661
邀请新用户注册赠送积分活动 1466923
关于科研通互助平台的介绍 1439539