Performance of two large language models for data extraction in evidence synthesis

计算机科学 解析 数据提取 上传 范围(计算机科学) 插件 数据挖掘 自然语言处理 数据科学 梅德林 万维网 程序设计语言 政治学 法学
作者
Amanda Konet,Ian B. Thomas,Gerald Gartlehner,Leila C. Kahwati,Rainer Hilscher,Shannon Kugley,Karen Crotty,Meera Viswanathan,Rob Chew
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (5): 818-824 被引量:3
标识
DOI:10.1002/jrsm.1732
摘要

Abstract Accurate data extraction is a key component of evidence synthesis and critical to valid results. The advent of publicly available large language models (LLMs) has generated interest in these tools for evidence synthesis and created uncertainty about the choice of LLM. We compare the performance of two widely available LLMs (Claude 2 and GPT‐4) for extracting pre‐specified data elements from 10 published articles included in a previously completed systematic review. We use prompts and full study PDFs to compare the outputs from the browser versions of Claude 2 and GPT‐4. GPT‐4 required use of a third‐party plugin to upload and parse PDFs. Accuracy was high for Claude 2 (96.3%). The accuracy of GPT‐4 with the plug‐in was lower (68.8%); however, most of the errors were due to the plug‐in. Both LLMs correctly recognized when prespecified data elements were missing from the source PDF and generated correct information for data elements that were not reported explicitly in the articles. A secondary analysis demonstrated that, when provided selected text from the PDFs, Claude 2 and GPT‐4 accurately extracted 98.7% and 100% of the data elements, respectively. Limitations include the narrow scope of the study PDFs used, that prompt development was completed using only Claude 2, and that we cannot guarantee the open‐source articles were not used to train the LLMs. This study highlights the potential for LLMs to revolutionize data extraction but underscores the importance of accurate PDF parsing. For now, it remains essential for a human investigator to validate LLM extractions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hhzz完成签到,获得积分10
1秒前
1秒前
xhemers完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
2秒前
爱静静应助怡然的莫茗采纳,获得10
3秒前
4秒前
科研通AI5应助清秀的以云采纳,获得30
4秒前
李健的粉丝团团长应助xx采纳,获得10
6秒前
大豪子发布了新的文献求助30
6秒前
李繁蕊发布了新的文献求助10
6秒前
10秒前
10秒前
10秒前
10秒前
橘柚完成签到 ,获得积分10
11秒前
zmmmm发布了新的文献求助10
11秒前
领导范儿应助温言采纳,获得10
11秒前
思源应助OvO采纳,获得10
13秒前
迷糊发布了新的文献求助30
14秒前
LY发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
KimJongUn完成签到,获得积分10
15秒前
17秒前
17秒前
zy完成签到,获得积分10
18秒前
开心果子发布了新的文献求助10
18秒前
云痴子完成签到,获得积分10
19秒前
SciGPT应助粥粥采纳,获得10
19秒前
19秒前
19秒前
20秒前
苏源完成签到,获得积分10
20秒前
wu关闭了wu文献求助
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808