亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance of two large language models for data extraction in evidence synthesis

计算机科学 解析 数据提取 上传 范围(计算机科学) 插件 数据挖掘 自然语言处理 数据科学 梅德林 万维网 程序设计语言 政治学 法学
作者
Amanda Konet,Ian B. Thomas,Gerald Gartlehner,Leila C. Kahwati,Rainer Hilscher,Shannon Kugley,Karen Crotty,Meera Viswanathan,Robert Chew
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (5): 818-824 被引量:45
标识
DOI:10.1002/jrsm.1732
摘要

Abstract Accurate data extraction is a key component of evidence synthesis and critical to valid results. The advent of publicly available large language models (LLMs) has generated interest in these tools for evidence synthesis and created uncertainty about the choice of LLM. We compare the performance of two widely available LLMs (Claude 2 and GPT‐4) for extracting pre‐specified data elements from 10 published articles included in a previously completed systematic review. We use prompts and full study PDFs to compare the outputs from the browser versions of Claude 2 and GPT‐4. GPT‐4 required use of a third‐party plugin to upload and parse PDFs. Accuracy was high for Claude 2 (96.3%). The accuracy of GPT‐4 with the plug‐in was lower (68.8%); however, most of the errors were due to the plug‐in. Both LLMs correctly recognized when prespecified data elements were missing from the source PDF and generated correct information for data elements that were not reported explicitly in the articles. A secondary analysis demonstrated that, when provided selected text from the PDFs, Claude 2 and GPT‐4 accurately extracted 98.7% and 100% of the data elements, respectively. Limitations include the narrow scope of the study PDFs used, that prompt development was completed using only Claude 2, and that we cannot guarantee the open‐source articles were not used to train the LLMs. This study highlights the potential for LLMs to revolutionize data extraction but underscores the importance of accurate PDF parsing. For now, it remains essential for a human investigator to validate LLM extractions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助谭代涛采纳,获得10
14秒前
31秒前
52秒前
harrywoo发布了新的文献求助30
58秒前
彭于晏应助真实的映寒采纳,获得10
58秒前
loitinsuen完成签到,获得积分10
1分钟前
1分钟前
Jasper应助明芬采纳,获得10
1分钟前
酷波er应助harrywoo采纳,获得10
1分钟前
1分钟前
1分钟前
明芬发布了新的文献求助10
1分钟前
谭代涛发布了新的文献求助10
2分钟前
草木完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
明芬发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
精明犀牛完成签到,获得积分10
3分钟前
3分钟前
vvsloy发布了新的文献求助10
3分钟前
lutos发布了新的文献求助10
3分钟前
精明犀牛发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Imran完成签到,获得积分10
3分钟前
4分钟前
CodeCraft应助真实的映寒采纳,获得10
4分钟前
在水一方应助谭代涛采纳,获得10
4分钟前
4分钟前
谭代涛发布了新的文献求助10
4分钟前
犬来八荒发布了新的文献求助30
4分钟前
小山己几完成签到,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
求求您啦完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599825
求助须知:如何正确求助?哪些是违规求助? 4685564
关于积分的说明 14838662
捐赠科研通 4671771
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946