Preoperative Differentiation of HER2‐Zero and HER2‐Low from HER2‐Positive Invasive Ductal Breast Cancers Using BI‐RADS MRI Features and Machine Learning Modeling

医学 乳腺癌 随机森林 人工智能 支持向量机 机器学习 HER2/东北 双雷达 算法 计算机科学 癌症 乳腺摄影术 内科学
作者
Jiejie Zhou,Yang Zhang,Haiwei Miao,Ga Young Yoon,Jinhao Wang,Yezhi Lin,Yi Li,Yanlin Liu,Jeon‐Hor Chen,Zhifang Pan,Min‐Ying Su,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29447
摘要

Background Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2‐low is currently considered HER2‐negative, but patients may be eligible to receive new anti‐HER2 drug conjugates. Purpose To use breast MRI BI‐RADS features for classifying three HER2 levels, first to distinguish HER2‐zero from HER2‐low/positive (Task‐1), and then to distinguish HER2‐low from HER2‐positive (Task‐2). Study Type Retrospective. Population 621 invasive ductal cancer, 245 HER2‐zero, 191 HER2‐low, and 185 HER2‐positive. For Task‐1, 488 cases for training and 133 for testing. For Task‐2, 294 cases for training and 82 for testing. Field Strength/Sequence 3.0 T; 3D T1‐weighted DCE, short time inversion recovery T2, and single‐shot EPI DWI. Assessment Pathological information and BI‐RADS features were compared. Random Forest was used to select MRI features, and then four machine learning (ML) algorithms: decision tree (DT), support vector machine (SVM), k ‐nearest neighbors ( k ‐NN), and artificial neural nets (ANN), were applied to build models. Statistical Tests Chi‐square test, one‐way analysis of variance, and Kruskal–Wallis test were performed. The P values <0.05 were considered statistically significant. For ML models, the generated probability was used to construct the ROC curves. Results Peritumoral edema, the presence of multiple lesions and non‐mass enhancement (NME) showed significant differences. For distinguishing HER2‐zero from non‐zero (low + positive), multiple lesions, edema, margin, and tumor size were selected, and the k ‐NN model achieved the highest AUC of 0.86 in the training set and 0.79 in the testing set. For differentiating HER2‐low from HER2‐positive, multiple lesions, edema, and margin were selected, and the DT model achieved the highest AUC of 0.79 in the training set and 0.69 in the testing set. Data Conclusion BI‐RADS features read by radiologists from preoperative MRI can be analyzed using more sophisticated feature selection and ML algorithms to build models for the classification of HER2 status and identify HER2‐low. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱自己就好完成签到,获得积分10
刚刚
zwb发布了新的文献求助10
刚刚
wang完成签到,获得积分20
1秒前
NexusExplorer应助如梦如画采纳,获得10
1秒前
MJSZY发布了新的文献求助10
1秒前
3秒前
李爱国应助飞鱼采纳,获得10
3秒前
3秒前
西海岸第一rapper应助明空采纳,获得10
3秒前
谨慎青枫完成签到,获得积分10
3秒前
4秒前
mym发布了新的文献求助10
4秒前
5秒前
organic tirrttf完成签到,获得积分10
6秒前
华仔应助猪猪hero采纳,获得30
7秒前
Orange应助chengzhiheng采纳,获得10
7秒前
8秒前
zwb完成签到,获得积分10
8秒前
lynn发布了新的文献求助30
9秒前
欢呼鱼完成签到,获得积分20
10秒前
11秒前
11秒前
Owen应助宁天问采纳,获得10
11秒前
kuang发布了新的文献求助10
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
MJSZY完成签到,获得积分10
15秒前
知行合一完成签到 ,获得积分10
15秒前
16秒前
李曾文发布了新的文献求助10
17秒前
huangqian发布了新的文献求助10
17秒前
南拥夏栀完成签到,获得积分10
17秒前
Wang_ZiMo完成签到,获得积分10
18秒前
冷艳水壶发布了新的文献求助10
18秒前
英姑应助畅快的觅风采纳,获得10
18秒前
18秒前
领导范儿应助kk采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492