清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preoperative Differentiation of HER2‐Zero and HER2‐Low from HER2‐Positive Invasive Ductal Breast Cancers Using BI‐RADS MRI Features and Machine Learning Modeling

医学 乳腺癌 随机森林 人工智能 支持向量机 机器学习 HER2/东北 双雷达 算法 计算机科学 癌症 乳腺摄影术 内科学
作者
Jiejie Zhou,Yang Zhang,Haiwei Miao,Ga Young Yoon,Jinhao Wang,Yezhi Lin,Hailing Wang,Yanlin Liu,Jeon‐Hor Chen,Zhifang Pan,Min‐Ying Su,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:2
标识
DOI:10.1002/jmri.29447
摘要

Background Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2‐low is currently considered HER2‐negative, but patients may be eligible to receive new anti‐HER2 drug conjugates. Purpose To use breast MRI BI‐RADS features for classifying three HER2 levels, first to distinguish HER2‐zero from HER2‐low/positive (Task‐1), and then to distinguish HER2‐low from HER2‐positive (Task‐2). Study Type Retrospective. Population 621 invasive ductal cancer, 245 HER2‐zero, 191 HER2‐low, and 185 HER2‐positive. For Task‐1, 488 cases for training and 133 for testing. For Task‐2, 294 cases for training and 82 for testing. Field Strength/Sequence 3.0 T; 3D T1‐weighted DCE, short time inversion recovery T2, and single‐shot EPI DWI. Assessment Pathological information and BI‐RADS features were compared. Random Forest was used to select MRI features, and then four machine learning (ML) algorithms: decision tree (DT), support vector machine (SVM), k ‐nearest neighbors ( k ‐NN), and artificial neural nets (ANN), were applied to build models. Statistical Tests Chi‐square test, one‐way analysis of variance, and Kruskal–Wallis test were performed. The P values <0.05 were considered statistically significant. For ML models, the generated probability was used to construct the ROC curves. Results Peritumoral edema, the presence of multiple lesions and non‐mass enhancement (NME) showed significant differences. For distinguishing HER2‐zero from non‐zero (low + positive), multiple lesions, edema, margin, and tumor size were selected, and the k ‐NN model achieved the highest AUC of 0.86 in the training set and 0.79 in the testing set. For differentiating HER2‐low from HER2‐positive, multiple lesions, edema, and margin were selected, and the DT model achieved the highest AUC of 0.79 in the training set and 0.69 in the testing set. Data Conclusion BI‐RADS features read by radiologists from preoperative MRI can be analyzed using more sophisticated feature selection and ML algorithms to build models for the classification of HER2 status and identify HER2‐low. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
格林发布了新的文献求助10
10秒前
迅速千愁完成签到 ,获得积分10
13秒前
大水完成签到 ,获得积分10
16秒前
格林完成签到,获得积分10
20秒前
20秒前
Sanche发布了新的文献求助10
25秒前
diguohu完成签到,获得积分10
32秒前
无花果应助Wu采纳,获得10
37秒前
无花果应助asdhfasdk采纳,获得10
42秒前
梦夜孤星完成签到 ,获得积分10
44秒前
Axs完成签到,获得积分10
47秒前
酸奶球完成签到 ,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
白白嫩嫩完成签到,获得积分10
1分钟前
Sigma完成签到 ,获得积分10
1分钟前
堇笙vv完成签到,获得积分0
1分钟前
xiaochuan925完成签到 ,获得积分10
2分钟前
yuntong完成签到 ,获得积分10
2分钟前
小强完成签到 ,获得积分10
2分钟前
jlwang完成签到,获得积分10
2分钟前
CC完成签到,获得积分0
2分钟前
oaoalaa完成签到 ,获得积分10
3分钟前
DayFu完成签到 ,获得积分10
3分钟前
cai白白完成签到,获得积分0
3分钟前
Tong完成签到,获得积分0
3分钟前
旧雨新知完成签到 ,获得积分10
3分钟前
fogsea完成签到,获得积分0
4分钟前
奶糖喵完成签到 ,获得积分10
4分钟前
elisa828完成签到,获得积分10
4分钟前
4分钟前
秋夜临完成签到,获得积分10
4分钟前
Wu发布了新的文献求助10
4分钟前
yurbb完成签到,获得积分10
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
DJ_Tokyo完成签到,获得积分10
6分钟前
ybwei2008_163完成签到,获得积分20
6分钟前
zijingsy完成签到 ,获得积分10
6分钟前
huangzsdy完成签到,获得积分10
6分钟前
茗溪完成签到 ,获得积分10
7分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142823
求助须知:如何正确求助?哪些是违规求助? 2793662
关于积分的说明 7807147
捐赠科研通 2449971
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350