亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative Differentiation of HER2‐Zero and HER2‐Low from HER2‐Positive Invasive Ductal Breast Cancers Using BI‐RADS MRI Features and Machine Learning Modeling

医学 乳腺癌 随机森林 人工智能 支持向量机 机器学习 HER2/东北 双雷达 算法 计算机科学 癌症 乳腺摄影术 内科学
作者
Jiejie Zhou,Yang Zhang,Haiwei Miao,Ga Young Yoon,Jinhao Wang,Yezhi Lin,Yi Li,Yanlin Liu,Jeon‐Hor Chen,Zhifang Pan,Min‐Ying Su,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29447
摘要

Background Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2‐low is currently considered HER2‐negative, but patients may be eligible to receive new anti‐HER2 drug conjugates. Purpose To use breast MRI BI‐RADS features for classifying three HER2 levels, first to distinguish HER2‐zero from HER2‐low/positive (Task‐1), and then to distinguish HER2‐low from HER2‐positive (Task‐2). Study Type Retrospective. Population 621 invasive ductal cancer, 245 HER2‐zero, 191 HER2‐low, and 185 HER2‐positive. For Task‐1, 488 cases for training and 133 for testing. For Task‐2, 294 cases for training and 82 for testing. Field Strength/Sequence 3.0 T; 3D T1‐weighted DCE, short time inversion recovery T2, and single‐shot EPI DWI. Assessment Pathological information and BI‐RADS features were compared. Random Forest was used to select MRI features, and then four machine learning (ML) algorithms: decision tree (DT), support vector machine (SVM), k ‐nearest neighbors ( k ‐NN), and artificial neural nets (ANN), were applied to build models. Statistical Tests Chi‐square test, one‐way analysis of variance, and Kruskal–Wallis test were performed. The P values <0.05 were considered statistically significant. For ML models, the generated probability was used to construct the ROC curves. Results Peritumoral edema, the presence of multiple lesions and non‐mass enhancement (NME) showed significant differences. For distinguishing HER2‐zero from non‐zero (low + positive), multiple lesions, edema, margin, and tumor size were selected, and the k ‐NN model achieved the highest AUC of 0.86 in the training set and 0.79 in the testing set. For differentiating HER2‐low from HER2‐positive, multiple lesions, edema, and margin were selected, and the DT model achieved the highest AUC of 0.79 in the training set and 0.69 in the testing set. Data Conclusion BI‐RADS features read by radiologists from preoperative MRI can be analyzed using more sophisticated feature selection and ML algorithms to build models for the classification of HER2 status and identify HER2‐low. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alaa完成签到,获得积分20
11秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
搜集达人应助平常映雁采纳,获得10
29秒前
42秒前
量子星尘发布了新的文献求助10
46秒前
传奇3应助柏风华采纳,获得10
52秒前
Lucas应助Hazel采纳,获得30
53秒前
矢思然完成签到,获得积分10
53秒前
1分钟前
1分钟前
1分钟前
柏风华发布了新的文献求助10
1分钟前
Siren发布了新的文献求助30
1分钟前
1分钟前
FashionBoy应助动人的芷天采纳,获得10
1分钟前
1分钟前
嘟嘟完成签到 ,获得积分10
1分钟前
Hazel发布了新的文献求助30
1分钟前
小二郎应助Hazel采纳,获得30
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
洁琼93完成签到 ,获得积分10
2分钟前
cen完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Hazel发布了新的文献求助30
2分钟前
科研通AI5应助洁琼93采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助20
3分钟前
柏风华完成签到,获得积分10
3分钟前
卿霜发布了新的文献求助15
3分钟前
星辰大海应助deepast采纳,获得10
3分钟前
3分钟前
平常映雁发布了新的文献求助10
3分钟前
3分钟前
deepast发布了新的文献求助10
3分钟前
rp发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595381
求助须知:如何正确求助?哪些是违规求助? 4007777
关于积分的说明 12408512
捐赠科研通 3686375
什么是DOI,文献DOI怎么找? 2031815
邀请新用户注册赠送积分活动 1065060
科研通“疑难数据库(出版商)”最低求助积分说明 950410