亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative Differentiation of HER2‐Zero and HER2‐Low from HER2‐Positive Invasive Ductal Breast Cancers Using BI‐RADS MRI Features and Machine Learning Modeling

医学 乳腺癌 随机森林 人工智能 支持向量机 机器学习 HER2/东北 双雷达 算法 计算机科学 癌症 乳腺摄影术 内科学
作者
Jiejie Zhou,Yang Zhang,Haiwei Miao,Ga Young Yoon,Jinhao Wang,Yezhi Lin,Hailing Wang,Yanlin Liu,Jeon‐Hor Chen,Zhifang Pan,Min‐Ying Su,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:2
标识
DOI:10.1002/jmri.29447
摘要

Background Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2‐low is currently considered HER2‐negative, but patients may be eligible to receive new anti‐HER2 drug conjugates. Purpose To use breast MRI BI‐RADS features for classifying three HER2 levels, first to distinguish HER2‐zero from HER2‐low/positive (Task‐1), and then to distinguish HER2‐low from HER2‐positive (Task‐2). Study Type Retrospective. Population 621 invasive ductal cancer, 245 HER2‐zero, 191 HER2‐low, and 185 HER2‐positive. For Task‐1, 488 cases for training and 133 for testing. For Task‐2, 294 cases for training and 82 for testing. Field Strength/Sequence 3.0 T; 3D T1‐weighted DCE, short time inversion recovery T2, and single‐shot EPI DWI. Assessment Pathological information and BI‐RADS features were compared. Random Forest was used to select MRI features, and then four machine learning (ML) algorithms: decision tree (DT), support vector machine (SVM), k ‐nearest neighbors ( k ‐NN), and artificial neural nets (ANN), were applied to build models. Statistical Tests Chi‐square test, one‐way analysis of variance, and Kruskal–Wallis test were performed. The P values <0.05 were considered statistically significant. For ML models, the generated probability was used to construct the ROC curves. Results Peritumoral edema, the presence of multiple lesions and non‐mass enhancement (NME) showed significant differences. For distinguishing HER2‐zero from non‐zero (low + positive), multiple lesions, edema, margin, and tumor size were selected, and the k ‐NN model achieved the highest AUC of 0.86 in the training set and 0.79 in the testing set. For differentiating HER2‐low from HER2‐positive, multiple lesions, edema, and margin were selected, and the DT model achieved the highest AUC of 0.79 in the training set and 0.69 in the testing set. Data Conclusion BI‐RADS features read by radiologists from preoperative MRI can be analyzed using more sophisticated feature selection and ML algorithms to build models for the classification of HER2 status and identify HER2‐low. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jing给jing的求助进行了留言
49秒前
57秒前
Ava应助lalalatiancai采纳,获得10
58秒前
1分钟前
CodeCraft应助害羞的采波采纳,获得10
1分钟前
1分钟前
lalalatiancai发布了新的文献求助10
1分钟前
xiezhuochun完成签到 ,获得积分10
1分钟前
lalalatiancai完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
土味霸总发布了新的文献求助10
2分钟前
2分钟前
景行行止完成签到 ,获得积分10
2分钟前
满地发布了新的文献求助20
2分钟前
土味霸总完成签到,获得积分20
2分钟前
2分钟前
2分钟前
满地完成签到,获得积分10
3分钟前
火星上的菲鹰应助早坂爱采纳,获得10
3分钟前
传奇3应助早坂爱采纳,获得10
3分钟前
情怀应助害羞的采波采纳,获得10
3分钟前
3分钟前
jing发布了新的文献求助10
4分钟前
田yg完成签到,获得积分10
4分钟前
4分钟前
CQC发布了新的文献求助20
4分钟前
DYZ完成签到,获得积分10
4分钟前
jing完成签到,获得积分10
4分钟前
4分钟前
4分钟前
wanci应助科研通管家采纳,获得10
4分钟前
lalala完成签到 ,获得积分10
5分钟前
5分钟前
刘泓锦发布了新的文献求助30
5分钟前
CQC完成签到,获得积分20
5分钟前
852应助害羞的采波采纳,获得10
6分钟前
汉堡包应助小乔采纳,获得10
6分钟前
blossoms完成签到 ,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760497
科研通“疑难数据库(出版商)”最低求助积分说明 735991