Preoperative Differentiation of HER2‐Zero and HER2‐Low from HER2‐Positive Invasive Ductal Breast Cancers Using BI‐RADS MRI Features and Machine Learning Modeling

医学 乳腺癌 随机森林 人工智能 支持向量机 机器学习 HER2/东北 双雷达 算法 计算机科学 癌症 乳腺摄影术 内科学
作者
Jiejie Zhou,Yang Zhang,Haiwei Miao,Ga Young Yoon,Jinhao Wang,Yezhi Lin,Yi Li,Yanlin Liu,Jeon‐Hor Chen,Zhifang Pan,Min‐Ying Su,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29447
摘要

Background Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2‐low is currently considered HER2‐negative, but patients may be eligible to receive new anti‐HER2 drug conjugates. Purpose To use breast MRI BI‐RADS features for classifying three HER2 levels, first to distinguish HER2‐zero from HER2‐low/positive (Task‐1), and then to distinguish HER2‐low from HER2‐positive (Task‐2). Study Type Retrospective. Population 621 invasive ductal cancer, 245 HER2‐zero, 191 HER2‐low, and 185 HER2‐positive. For Task‐1, 488 cases for training and 133 for testing. For Task‐2, 294 cases for training and 82 for testing. Field Strength/Sequence 3.0 T; 3D T1‐weighted DCE, short time inversion recovery T2, and single‐shot EPI DWI. Assessment Pathological information and BI‐RADS features were compared. Random Forest was used to select MRI features, and then four machine learning (ML) algorithms: decision tree (DT), support vector machine (SVM), k ‐nearest neighbors ( k ‐NN), and artificial neural nets (ANN), were applied to build models. Statistical Tests Chi‐square test, one‐way analysis of variance, and Kruskal–Wallis test were performed. The P values <0.05 were considered statistically significant. For ML models, the generated probability was used to construct the ROC curves. Results Peritumoral edema, the presence of multiple lesions and non‐mass enhancement (NME) showed significant differences. For distinguishing HER2‐zero from non‐zero (low + positive), multiple lesions, edema, margin, and tumor size were selected, and the k ‐NN model achieved the highest AUC of 0.86 in the training set and 0.79 in the testing set. For differentiating HER2‐low from HER2‐positive, multiple lesions, edema, and margin were selected, and the DT model achieved the highest AUC of 0.79 in the training set and 0.69 in the testing set. Data Conclusion BI‐RADS features read by radiologists from preoperative MRI can be analyzed using more sophisticated feature selection and ML algorithms to build models for the classification of HER2 status and identify HER2‐low. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碱性染料完成签到,获得积分10
3秒前
CAOHOU应助宁山河采纳,获得10
6秒前
顾矜应助孙闹闹采纳,获得10
7秒前
Qiao应助一般路过kamenride采纳,获得10
8秒前
98发布了新的文献求助10
9秒前
小丸子完成签到 ,获得积分10
10秒前
lydy1993完成签到,获得积分10
11秒前
SYLH应助活泼的便当采纳,获得10
14秒前
14秒前
14秒前
16秒前
孙闹闹发布了新的文献求助10
18秒前
Hello应助博修采纳,获得10
19秒前
Maggie发布了新的文献求助10
19秒前
21秒前
一一发布了新的文献求助10
24秒前
科研通AI2S应助无趣采纳,获得30
25秒前
荣誉完成签到,获得积分10
26秒前
王王的狗子完成签到 ,获得积分10
26秒前
脑洞疼应助Junlei采纳,获得10
29秒前
30秒前
duf完成签到 ,获得积分10
32秒前
33秒前
清歌浊酒发布了新的文献求助10
34秒前
梅梅王发布了新的文献求助10
35秒前
Arthors完成签到 ,获得积分10
36秒前
38秒前
39秒前
40秒前
41秒前
姚佳麒完成签到,获得积分10
42秒前
芒果布丁发布了新的文献求助10
42秒前
纪亦竹发布了新的文献求助10
43秒前
梅梅王完成签到,获得积分10
43秒前
mr完成签到 ,获得积分10
44秒前
zhang完成签到,获得积分10
44秒前
45秒前
一一完成签到,获得积分10
45秒前
45秒前
安安发布了新的文献求助10
45秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962550
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141672
捐赠科研通 3241287
什么是DOI,文献DOI怎么找? 1791495
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803474