亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi‐omics molecular phenotyping reveals the potential mechanisms of chemotherapy response and resistance in small cell lung cancer

组学 肺癌 医学 计算生物学 生物信息学 生物 肿瘤科
作者
Ying Cheng,Jie Hu,Xuan Gao,B. W. Yan,Zelong Xu,Ying Liu,Jing Zhu,Zhentian Liu,Ying Wang,Junfeng Wang,Ying Xin,Ke Zheng,Ya–Wen Yang,Xuefeng Xia,Xin Yi,Kai Niu,Changliang Yang,Hongxia Cui,Yanrong Wang,Haiyang Yu,Jie Hao,Peidong Li,Liang Zhang,Zili Li,Hongyu Wang,Yanli Sun,Shubo Zuo,Tianying Du,Jinhua Xu,Gan Zhang,Fei Chen,Ning Ding
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:14 (6)
标识
DOI:10.1002/ctm2.1728
摘要

Dear Editor, Small cell lung cancer (SCLC) is a low-survival malignant lung cancer with mainly extensive stage (ES).1, 2 A major challenge in treating SCLC is chemotherapy resistance.3 However, studies on disease evolution and molecular mechanisms of resistance during chemotherapy are insufficient. Here, we conducted a multicentre, observational study to profile the multi-omics characteristics of tumour tissue, circulating tumour cell (CTC) and circulating tumour DNA (ctDNA) in Chinese ES-SCLC patients. This study enrolled 54 patients, including naïve cohort and relapsed cohort (Figure S1 and Table S1). Except for one patient who had distant metastasis in relapsed cohort, all the patients had ES-SCLC. According to the different stratification parameters, patients were divided by two manners. One manner was chemo-resistant vs chemo-sensitive, according to whether the time from the end of first-line therapy to disease progression exceeded 90 days (chemotherapy-free interval); other manner was responders vs non-responders, according to Response Evaluation Criteria in Solid Tumours (version 1.1), and the patient whose lesions shrank over 30% was defined as responder. The median overall survival (OS) and progression-free survival (PFS) for all patients were 9.6 m (95% confidence interval [CI]: 7.5‒12.2 m) and 4.5 m (95% CI: 3.4‒5.7 m), respectively. No clinical parameters had a significant effect on prognosis (Table S2). Chemo-sensitive/response patients had longer PFS (Figure S2), which suggested that different biological contexts may exist. The detection of ctDNA mutations was highly consistent with tumour results and the tumour mutation burden (TMB) was highly correlated (Figure S3A‒D and Tables S3 and S4), which indicated that ctDNA mutations could be used to monitor mutational changes during treatment with high confidence. As expected, TP53 and RB1 mutations were detected in most patients' baseline ctDNA (Figure S3A). Some frequently deleted genomic regions in tumours and more in CTCs were found (Figure S3E,F), which may indicate the evolution of genomic heterogeneity among diverse clones and the initial development of drug resistance. The tumour showed a high proportion of C > A transitions (Figure S3G). In both non-responders and chemo-resistant in baseline ctDNA, only the KDR gene (vascular endothelial growth factor receptor [VEGFR]) had a significantly higher mutation frequency (Figure 1A,C). The baseline ctDNA of chemo-resistant showed more significant deletion frequency, but only SORCS1 had a significant deletion frequency in baseline tumours (Figure S4). The TMB of baseline ctDNA in non-responders and microsatellite instability (MSI) score of baseline tumours in chemo-resistant were significantly higher (Figures 1B,D and S7B). However, other genomic indexes in tumour had no significant differences (Figures S5‒S7). Three pathways were highly enriched and one pathway was lower in non-responders (Figure S8). Tumour samples clustered into high and low levels of immune infiltrate by RNA-sequencing (Figure 2A,B). Although immune infiltration had no significant difference (Figure 2C,D), some immune populations in non-responders/chemo-resistant were significantly higher (Figures 2E, S9 and S10). The KRAS signalling pathways were enriched in non-responders in tumour (Figures 2F and S11), which were reported to affect the presence and suppressive function of tumouricidal cells.4 Conversely, several pathways related to proliferation and immunity were significantly up-regulated in responders/chemo-sensitive in both baseline tumours and CTCs (Figures 2F‒I, S11 and S12), suggesting that a more vital ability of differentiation and immunogenicity may occur in chemotherapy-sensitive tumour. The cell death pathway related to pyroptosis was different in baseline CTCs, and there was a significantly higher score of alkaliptosis in relapse nodes (Figure 2J,K). After chemotherapy, the CTCs in chemo-sensitive were significantly reduced at C3D1 while fewer changes were observed in chemo-resistant (Figure S13). The changes in the CTC counts and molecular tumour burden index (mTBI)5 were nearly consistent during conventional follow-up. The responders mostly tended to show a decreasing trend, while chemo-resistant showed a more frequent increasing trend (Figure S14). Phylogenetic relation trees showed a sustained high cancer cell fraction of major clones in chemo-resistant in both baseline and relapsed samples, but chemo-sensitive was characterised by the weakening of major clones in baseline samples (Figure S15A,B). Although the average number of mutations of trunk private clones was significantly higher in non-responders, the fraction of functional genes was lower (Figure S15C,D). The genomic landscape of 21 paired baseline and relapsed ctDNA showed no significant differences in TMB and mTBI (Figure S16). The KDR gene was still one of the top 10 frequently mutated genes (Figure 3A). The platinum drug resistance pathway was significantly enriched in baseline subclonal mutations and relapsed clonal mutations (Figure 3B), which indicated that tumour with drug-resistant mutations expanded from subclone to clone. Meanwhile, the tyrosine kinase inhibitor resistance and immune-related pathways were enriched in relapsed clonal mutations and subclonal mutations, respectively. Finally, we summarised the correlation between mutation/pathway/immunity and pathological response or chemotherapy sensitivity (Figure 3C), which may provide a comprehensive concept of treatment response and resistance mechanisms in SCLC. Consistent global copy number variation (CNV) results from cell lines and patient 1022 were observed, and some significant CNV changes were found between patients with or without durable clinical benefit (Figure S17). Patients with KDR mutation tended to have higher KDR expression levels and poor prognosis (Figure S18A,B). By using other datasets, we found that KDR was significantly highly expressed in SCLC-I and patients with low expression of the KDR were enriched in SCLC-A in the IMpower133 cohort6 (Figure S18C‒F). OS was significantly shorter in patients with high expression of KDR and VEGF pathways (Figure 4A,B). Moreover, the tumour with a high expression of KDR tended to be 'hot' (Figures 4C,D and S19). These findings were consistent with previous pathway enrichment results, suggesting that patients with KDR mutation and/or high expression of KDR may resist chemotherapy but benefit from immunotherapy, anti-folates and AURK inhibitors.7 Several chemotherapy agents contained higher IC50 in the high KDR expression group (Figure 4E), which may reveal a resistant trend. In conclusion, chemo-sensitive/response patients showed beneficial survival, and we found the potential mechanism was that KDR mutation, PI3K amplification, VEGF and KRAS pathways activation contribute to the development of chemotherapy resistance. These results provide critical information for the clinical decision of VEGF signalling pathway inhibitors combined with chemotherapy and imply that targeted therapies may benefit some patients who are resistant to chemotherapy. Besides, the difference in tumour microenvironment and several immune pathways enrichment between chemo-sensitive and chemo-resistant was consistent with the concept that tumours can take control of environment to reset the body homeostasis.8 However, we still lack sufficient evidence to determine the most appropriate therapies for recurring patients. Future studies are warranted on larger cohorts of patients in a real-world cohort to explore. Conceptualisation, supervision, funding acquisition and writing—review and editing: Ying Cheng. Resources, data curation, software, formal analysis, methodology, writing—original draft and writing—review and editing: Xuan Gao and Zelong Xu. Formal analysis, methodology and writing—review and editing: Bingfa Yan. Conceptualisation, resources and writing—review and editing: Jie Hu. Resources, data curation and writing—review and editing: Ying Liu, Jing Zhu, Ying Wang, Junfeng Wang, Changliang Yang, Hongxia Cui, Yanrong Wang, Guang Yang, Jie Hao, Peidong Li, Liang Zhang, Zili Li, Hongyu Wang, Yanli Sun, Shubo Zuo and Tianying Du. Software, formal analysis and writing—review and editing: Zhentian Liu, Xuefeng Xia and Xin Yi. Resources and writing—review and editing: Ying Xin, Ke Zheng, Yawen Yang and Kai Niu. Formal analysis and writing—review and editing: Jinhua Xu, Gan Zhang, Fei Chen and Ning Ding. We are greatly thankful for the funding for this study provided by the Development and Reform Commission of Jilin Province (2021C043‑1) and the Science and Technology Planning Project of Jilin Province (YDZJ202202CXJD009). We greatly appreciate the patients and investigators who participated in this study for providing the data. Xuan Gao, Bingfa Yan, Zelong Xu, Zhentian Liu, Xuefeng Xia and Xin Yi are employees of Beijing GenePlus Technology Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest. All patients provided written informed consent to conduct research in this study, and ethical approvals were obtained from the two hospitals (NOPRODLUC0001). The study received approval to conduct genomic research from the China Human Genetic Resources Administration Office (HGRAO, 2016-161). Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情依白发布了新的文献求助10
13秒前
40秒前
NFS发布了新的文献求助10
47秒前
空儒完成签到 ,获得积分10
51秒前
52秒前
Ken发布了新的文献求助10
56秒前
1分钟前
1分钟前
默默曼冬发布了新的文献求助10
1分钟前
aayy完成签到,获得积分20
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
aayy关注了科研通微信公众号
1分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
许大脚完成签到 ,获得积分10
2分钟前
2分钟前
忞航完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
隐形曼青应助momo采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
哈哈发布了新的文献求助30
4分钟前
小圭韦发布了新的文献求助10
4分钟前
南寅完成签到,获得积分10
5分钟前
5分钟前
默默曼冬完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
mirror应助小圭韦采纳,获得10
5分钟前
天雨流芳完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681628
求助须知:如何正确求助?哪些是违规求助? 5011683
关于积分的说明 15175918
捐赠科研通 4841236
什么是DOI,文献DOI怎么找? 2594994
邀请新用户注册赠送积分活动 1547971
关于科研通互助平台的介绍 1506006