SFAM: Lightweight Spectrum Unreferenced Attention Network

计算机科学 人工智能 离散余弦变换 模式识别(心理学) 变压器 计算复杂性理论 频域 人工神经网络 特征提取 特征(语言学) 图像(数学) 算法 计算机视觉 工程类 哲学 电气工程 语言学 电压
作者
Xuanhao Qi,Min Zhi,Y. Yin,Ping Ping,Y. Zhang
标识
DOI:10.1145/3652583.3658006
摘要

The construction of deep neural networks depends on a significant number of parameters and computational complexity, which poses a challenge in the field of image processing. To address the issue of the Transformer network model's large size and inability to effectively capture local features of the image, this paper proposes a lightweight composite Transformer structure that combines a spectral feature refinement module (SFRM) and a parameterless attention augmentation module (PAAM). The SFRM and PAAM work together to improve the quality of the spectral features used in the transformer. The proposed structure aims to enhance the performance of the transformer without adding unnecessary complexity. The SFRM utilises the two-dimensional discrete cosine transform to convert the image from the spatial domain to the frequency domain. This process extracts both the overall image structure and detailed feature information from the high-frequency and low-frequency regions, respectively. The aim is to purify the spatially-insignificant features in the original image. The PAAM introduces a parameter-free channel, spatial, and 3D attention enhancement mechanism to extract correlation features of local information in the spatial domain without increasing the number of parameters. This improves the expression of local features in the image. Additionally, Depth Separable (DConv MLP) is introduced to further reduce the network model's weight. The experimental results show that the proposed algorithm achieves an accuracy of 79.6% on the ImageNet-1K dataset, 91.6% on the Oxford 102 Flower Dataset, and 94.1% on the CIFAR-10 dataset. Compared to ViT-B, Swin-T, and CSwin-T, respectively, the number of covariates decreases by 86.11%, 58.62%, and 47.83%. The number of parameters is also lower than VGG-16 and ResNet-110 by 91.07% and 77.70%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助mikasa采纳,获得10
刚刚
浮游应助ZYJ采纳,获得10
刚刚
DijiaXu应助dew采纳,获得10
刚刚
大傻春发布了新的文献求助10
刚刚
growl完成签到,获得积分10
刚刚
Liu发布了新的文献求助10
刚刚
北陆小猫发布了新的文献求助10
刚刚
2秒前
3秒前
4秒前
思源应助两张采纳,获得10
4秒前
4秒前
解语花发布了新的文献求助10
5秒前
5秒前
nono完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
jackzzs完成签到,获得积分10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
桐桐应助Ffffa采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得30
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
Guyong发布了新的文献求助10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
long应助科研通管家采纳,获得20
6秒前
豆豆完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
丰富飞阳发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068797
求助须知:如何正确求助?哪些是违规求助? 4290368
关于积分的说明 13367314
捐赠科研通 4110189
什么是DOI,文献DOI怎么找? 2250823
邀请新用户注册赠送积分活动 1256000
关于科研通互助平台的介绍 1188539