亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SFAM: Lightweight Spectrum Unreferenced Attention Network

计算机科学 人工智能 离散余弦变换 模式识别(心理学) 变压器 计算复杂性理论 频域 人工神经网络 特征提取 特征(语言学) 图像(数学) 算法 计算机视觉 工程类 语言学 哲学 电压 电气工程
作者
Xuanhao Qi,Min Zhi,Y. Yin,Ping Ping,Y. Zhang
标识
DOI:10.1145/3652583.3658006
摘要

The construction of deep neural networks depends on a significant number of parameters and computational complexity, which poses a challenge in the field of image processing. To address the issue of the Transformer network model's large size and inability to effectively capture local features of the image, this paper proposes a lightweight composite Transformer structure that combines a spectral feature refinement module (SFRM) and a parameterless attention augmentation module (PAAM). The SFRM and PAAM work together to improve the quality of the spectral features used in the transformer. The proposed structure aims to enhance the performance of the transformer without adding unnecessary complexity. The SFRM utilises the two-dimensional discrete cosine transform to convert the image from the spatial domain to the frequency domain. This process extracts both the overall image structure and detailed feature information from the high-frequency and low-frequency regions, respectively. The aim is to purify the spatially-insignificant features in the original image. The PAAM introduces a parameter-free channel, spatial, and 3D attention enhancement mechanism to extract correlation features of local information in the spatial domain without increasing the number of parameters. This improves the expression of local features in the image. Additionally, Depth Separable (DConv MLP) is introduced to further reduce the network model's weight. The experimental results show that the proposed algorithm achieves an accuracy of 79.6% on the ImageNet-1K dataset, 91.6% on the Oxford 102 Flower Dataset, and 94.1% on the CIFAR-10 dataset. Compared to ViT-B, Swin-T, and CSwin-T, respectively, the number of covariates decreases by 86.11%, 58.62%, and 47.83%. The number of parameters is also lower than VGG-16 and ResNet-110 by 91.07% and 77.70%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
4秒前
少管我完成签到 ,获得积分10
7秒前
小新完成签到 ,获得积分10
7秒前
14秒前
21秒前
自觉语琴完成签到 ,获得积分10
32秒前
34秒前
54秒前
jjjjjj发布了新的文献求助10
59秒前
jjjjjj完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
爆米花应助vinci采纳,获得10
1分钟前
az2025完成签到,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Emad0gh发布了新的文献求助20
2分钟前
vinci发布了新的文献求助10
2分钟前
月见完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
踏实白柏发布了新的文献求助10
3分钟前
安渝发布了新的文献求助10
3分钟前
爱科研的小凡完成签到 ,获得积分10
3分钟前
Lucas应助踏实白柏采纳,获得10
3分钟前
钉钉完成签到 ,获得积分10
3分钟前
3分钟前
问瀚一涟漪发布了新的文献求助150
3分钟前
fly发布了新的文献求助10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
4分钟前
心静止水发布了新的文献求助10
4分钟前
jyy发布了新的文献求助10
4分钟前
伯云完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476343
求助须知:如何正确求助?哪些是违规求助? 4578021
关于积分的说明 14363359
捐赠科研通 4505924
什么是DOI,文献DOI怎么找? 2468940
邀请新用户注册赠送积分活动 1456521
关于科研通互助平台的介绍 1430207