亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SFAM: Lightweight Spectrum Unreferenced Attention Network

计算机科学 人工智能 离散余弦变换 模式识别(心理学) 变压器 计算复杂性理论 频域 人工神经网络 特征提取 特征(语言学) 图像(数学) 算法 计算机视觉 工程类 语言学 哲学 电压 电气工程
作者
Xuanhao Qi,Min Zhi,Y. Yin,Ping Ping,Y. Zhang
标识
DOI:10.1145/3652583.3658006
摘要

The construction of deep neural networks depends on a significant number of parameters and computational complexity, which poses a challenge in the field of image processing. To address the issue of the Transformer network model's large size and inability to effectively capture local features of the image, this paper proposes a lightweight composite Transformer structure that combines a spectral feature refinement module (SFRM) and a parameterless attention augmentation module (PAAM). The SFRM and PAAM work together to improve the quality of the spectral features used in the transformer. The proposed structure aims to enhance the performance of the transformer without adding unnecessary complexity. The SFRM utilises the two-dimensional discrete cosine transform to convert the image from the spatial domain to the frequency domain. This process extracts both the overall image structure and detailed feature information from the high-frequency and low-frequency regions, respectively. The aim is to purify the spatially-insignificant features in the original image. The PAAM introduces a parameter-free channel, spatial, and 3D attention enhancement mechanism to extract correlation features of local information in the spatial domain without increasing the number of parameters. This improves the expression of local features in the image. Additionally, Depth Separable (DConv MLP) is introduced to further reduce the network model's weight. The experimental results show that the proposed algorithm achieves an accuracy of 79.6% on the ImageNet-1K dataset, 91.6% on the Oxford 102 Flower Dataset, and 94.1% on the CIFAR-10 dataset. Compared to ViT-B, Swin-T, and CSwin-T, respectively, the number of covariates decreases by 86.11%, 58.62%, and 47.83%. The number of parameters is also lower than VGG-16 and ResNet-110 by 91.07% and 77.70%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
852应助hh采纳,获得30
8秒前
39秒前
40秒前
hh发布了新的文献求助30
43秒前
浮游应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
46秒前
852应助hh采纳,获得30
58秒前
1分钟前
1分钟前
hh发布了新的文献求助30
1分钟前
搜集达人应助秋来九月八采纳,获得10
1分钟前
1分钟前
1分钟前
Chocolat_Chaud完成签到,获得积分10
1分钟前
刘冬晴发布了新的文献求助10
1分钟前
又绿发布了新的文献求助10
2分钟前
zhang完成签到,获得积分10
2分钟前
非洲大象完成签到,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
无限暖暖发布了新的文献求助10
2分钟前
3分钟前
hh完成签到,获得积分10
3分钟前
JIANHUAN完成签到 ,获得积分10
3分钟前
泥娃娃完成签到,获得积分10
3分钟前
蔚欢完成签到 ,获得积分10
3分钟前
CJH104完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502902
求助须知:如何正确求助?哪些是违规求助? 4598594
关于积分的说明 14464661
捐赠科研通 4532215
什么是DOI,文献DOI怎么找? 2483863
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439745