亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SFAM: Lightweight Spectrum Unreferenced Attention Network

计算机科学 人工智能 离散余弦变换 模式识别(心理学) 变压器 计算复杂性理论 频域 人工神经网络 特征提取 特征(语言学) 图像(数学) 算法 计算机视觉 工程类 语言学 哲学 电压 电气工程
作者
Xuanhao Qi,Min Zhi,Y. Yin,Ping Ping,Y. Zhang
标识
DOI:10.1145/3652583.3658006
摘要

The construction of deep neural networks depends on a significant number of parameters and computational complexity, which poses a challenge in the field of image processing. To address the issue of the Transformer network model's large size and inability to effectively capture local features of the image, this paper proposes a lightweight composite Transformer structure that combines a spectral feature refinement module (SFRM) and a parameterless attention augmentation module (PAAM). The SFRM and PAAM work together to improve the quality of the spectral features used in the transformer. The proposed structure aims to enhance the performance of the transformer without adding unnecessary complexity. The SFRM utilises the two-dimensional discrete cosine transform to convert the image from the spatial domain to the frequency domain. This process extracts both the overall image structure and detailed feature information from the high-frequency and low-frequency regions, respectively. The aim is to purify the spatially-insignificant features in the original image. The PAAM introduces a parameter-free channel, spatial, and 3D attention enhancement mechanism to extract correlation features of local information in the spatial domain without increasing the number of parameters. This improves the expression of local features in the image. Additionally, Depth Separable (DConv MLP) is introduced to further reduce the network model's weight. The experimental results show that the proposed algorithm achieves an accuracy of 79.6% on the ImageNet-1K dataset, 91.6% on the Oxford 102 Flower Dataset, and 94.1% on the CIFAR-10 dataset. Compared to ViT-B, Swin-T, and CSwin-T, respectively, the number of covariates decreases by 86.11%, 58.62%, and 47.83%. The number of parameters is also lower than VGG-16 and ResNet-110 by 91.07% and 77.70%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就灵波发布了新的文献求助10
11秒前
成就灵波完成签到,获得积分10
27秒前
44秒前
yuji完成签到 ,获得积分10
47秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
自由凝竹发布了新的文献求助10
1分钟前
浮游应助自由凝竹采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
2分钟前
烟花应助机灵的访天采纳,获得10
2分钟前
2分钟前
2分钟前
自由凝竹完成签到,获得积分20
2分钟前
all发布了新的文献求助10
2分钟前
耳东陈发布了新的文献求助10
2分钟前
2分钟前
2分钟前
归尘发布了新的文献求助10
2分钟前
all完成签到,获得积分10
2分钟前
einspringen发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
kuyi完成签到 ,获得积分10
3分钟前
3分钟前
浮游应助奋斗雪巧采纳,获得10
3分钟前
ding应助糊涂的万采纳,获得30
3分钟前
3分钟前
糊涂的万发布了新的文献求助30
3分钟前
小李老博完成签到,获得积分10
4分钟前
4分钟前
米奇妙妙屋完成签到,获得积分10
4分钟前
4分钟前
ajing完成签到,获得积分10
4分钟前
358489228完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432511
求助须知:如何正确求助?哪些是违规求助? 4545025
关于积分的说明 14195163
捐赠科研通 4464479
什么是DOI,文献DOI怎么找? 2447121
邀请新用户注册赠送积分活动 1438472
关于科研通互助平台的介绍 1415324