TriMPL: Masked Multi-Prompt Learning with Knowledge Mixing for Vision-Language Few-shot Learning

概化理论 计算机科学 判别式 稳健性(进化) 一般化 人工智能 机器学习 学习迁移 集合(抽象数据类型) 自然语言处理 数学分析 统计 基因 生物化学 化学 程序设计语言 数学
作者
Xiangyu Liu,Yanlei Shang,Yong Chen
标识
DOI:10.1145/3652583.3658106
摘要

Prompt learning has been proven to be quite an effective technique for adapting large visual-language models (LVLMs) to downstream tasks via few-shot learning. Early methods often rely on a single prompt, which is insufficient for comprehensively representing a class. Subsequent efforts have explored multiple prompts to further enhance the adaptability and performance of LVLMs. However, these methods primarily focus on learning a set of more discriminative prompts, overlooking their generalizability. To learn prompts that are more balanced in both generalization and discrimination, we propose a novel multi-prompt learning approach, Masked Multi-Prompt Learning with Knowledge Mixing (dubbed TriMPL), which contains two pivotal mechanisms: (1) knowledge mixing to enhance the generalization of each individual prompt and (2) prompt masking to boost the prompt set's overall robustness. With respect to knowledge mixing, it progressively injects the general knowledge of handcrafted prompts into each learnable prompt at different Transformer encoding stages. While for prompt masking, of which the critical insight is that an optimal set of prompts should exhibit independence, allowing accurate predictions with just a subset of prompts. During training, TriMPL randomly masks some prompts to enhance the overall robustness of the learned prompts for image classification. We evaluate the effectiveness of TriMPL under three settings: (1) base-to-new generalization, (2) cross-dataset transfer, and (3) domain generalization. Extensive experiments demonstrate that TriMPL is capable of learning a set of effective prompts, achieving superior performance to quite a few state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清风应助快帮我找找采纳,获得500
刚刚
hehehe发布了新的文献求助10
刚刚
1秒前
泛泛之交完成签到,获得积分10
1秒前
1秒前
心流发布了新的文献求助20
2秒前
2秒前
龅牙苏发布了新的文献求助20
3秒前
3秒前
灵巧的书文应助lihaifeng采纳,获得10
3秒前
3秒前
liyang999完成签到 ,获得积分10
3秒前
成事在人307完成签到,获得积分10
4秒前
panpan完成签到 ,获得积分10
4秒前
4秒前
呆头完成签到,获得积分10
4秒前
5秒前
华仔应助布布采纳,获得10
5秒前
duyi0521完成签到,获得积分10
5秒前
CCCr完成签到,获得积分10
5秒前
甜筒发布了新的文献求助10
5秒前
慕青应助宋宋采纳,获得10
5秒前
听雨潇潇完成签到,获得积分10
6秒前
6秒前
Rrrr完成签到,获得积分10
6秒前
6秒前
SKYE发布了新的文献求助10
7秒前
十二完成签到,获得积分10
7秒前
8秒前
8秒前
可乐龙猫完成签到,获得积分10
8秒前
Tourist应助十字花科采纳,获得10
8秒前
9秒前
9秒前
jianglili完成签到 ,获得积分10
10秒前
牛不可发布了新的文献求助10
10秒前
西西歪完成签到,获得积分10
10秒前
锦江完成签到,获得积分10
10秒前
怕孤单的安蕾完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993