TriMPL: Masked Multi-Prompt Learning with Knowledge Mixing for Vision-Language Few-shot Learning

概化理论 计算机科学 判别式 稳健性(进化) 一般化 人工智能 机器学习 学习迁移 集合(抽象数据类型) 自然语言处理 程序设计语言 基因 数学 化学 统计 数学分析 生物化学
作者
Xiangyu Liu,Yanlei Shang,Yong Chen
标识
DOI:10.1145/3652583.3658106
摘要

Prompt learning has been proven to be quite an effective technique for adapting large visual-language models (LVLMs) to downstream tasks via few-shot learning. Early methods often rely on a single prompt, which is insufficient for comprehensively representing a class. Subsequent efforts have explored multiple prompts to further enhance the adaptability and performance of LVLMs. However, these methods primarily focus on learning a set of more discriminative prompts, overlooking their generalizability. To learn prompts that are more balanced in both generalization and discrimination, we propose a novel multi-prompt learning approach, Masked Multi-Prompt Learning with Knowledge Mixing (dubbed TriMPL), which contains two pivotal mechanisms: (1) knowledge mixing to enhance the generalization of each individual prompt and (2) prompt masking to boost the prompt set's overall robustness. With respect to knowledge mixing, it progressively injects the general knowledge of handcrafted prompts into each learnable prompt at different Transformer encoding stages. While for prompt masking, of which the critical insight is that an optimal set of prompts should exhibit independence, allowing accurate predictions with just a subset of prompts. During training, TriMPL randomly masks some prompts to enhance the overall robustness of the learned prompts for image classification. We evaluate the effectiveness of TriMPL under three settings: (1) base-to-new generalization, (2) cross-dataset transfer, and (3) domain generalization. Extensive experiments demonstrate that TriMPL is capable of learning a set of effective prompts, achieving superior performance to quite a few state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤浩宏完成签到,获得积分10
1秒前
1秒前
yudandan@CJLU发布了新的文献求助10
3秒前
Zkxxxx完成签到,获得积分10
3秒前
123完成签到,获得积分10
4秒前
大王卡完成签到,获得积分20
5秒前
5秒前
机智的紫丝完成签到,获得积分10
5秒前
TT发布了新的文献求助10
6秒前
田様应助啥,这都是啥采纳,获得10
9秒前
辛勤的孤容完成签到,获得积分10
10秒前
10秒前
10秒前
petrichor应助优美的跳跳糖采纳,获得1020
10秒前
科研通AI2S应助fleee采纳,获得10
10秒前
传奇3应助凝子老师采纳,获得10
11秒前
11秒前
11秒前
theverve完成签到,获得积分10
12秒前
ZJW完成签到,获得积分10
12秒前
完美世界应助bitahu采纳,获得10
12秒前
霸王龙完成签到,获得积分10
13秒前
15秒前
16秒前
YYJ25发布了新的文献求助10
16秒前
伯赏诗霜发布了新的文献求助50
17秒前
霸王龙发布了新的文献求助10
17秒前
ZJW发布了新的文献求助10
18秒前
ptjam完成签到 ,获得积分10
19秒前
miss发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
sun发布了新的文献求助10
23秒前
Ava应助土里刨星星的鱼采纳,获得10
25秒前
欢呼冰岚完成签到,获得积分10
25秒前
大王卡发布了新的文献求助30
25秒前
凝子老师发布了新的文献求助10
25秒前
优雅海雪发布了新的文献求助10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849