Comparison of three machine learning algorithms for classification of B‐cell neoplasms using clinical flow cytometry data

流式细胞术 机器学习 分类器(UML) 计算机科学 细胞仪 支持向量机 再培训 数据集 人工智能 算法 医学 业务 国际贸易 免疫学
作者
Wikum Dinalankara,David P. Ng,Luigi Marchionni,Paul D. Simonson
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
卷期号:106 (4): 282-293 被引量:2
标识
DOI:10.1002/cyto.b.22177
摘要

Abstract Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and costly process, and recent research has demonstrated that it is possible to utilize artificial intelligence (AI) algorithms to assist in the interpretive process. Here we report our examination of three previously published machine learning methods for classification of flow cytometry data and apply these to a B‐cell neoplasm dataset to obtain predicted disease subtypes. Each of the examined methods classifies samples according to specific disease categories using ungated flow cytometry data. We compare and contrast the three algorithms with respect to their architectures, and we report the multiclass classification accuracies and relative required computation times. Despite different architectures, two of the methods, flowCat and EnsembleCNN, had similarly good accuracies with relatively fast computational times. We note a speed advantage for EnsembleCNN, particularly in the case of addition of training data and retraining of the classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林结衣完成签到,获得积分10
1秒前
完美世界应助热情大树采纳,获得10
2秒前
yyy完成签到 ,获得积分10
2秒前
3秒前
lmg发布了新的文献求助10
3秒前
SYLH应助cc采纳,获得10
3秒前
梦想完成签到,获得积分20
4秒前
4秒前
qq158014169完成签到 ,获得积分10
4秒前
4秒前
深情安青应助DamenS采纳,获得10
4秒前
我是老大应助DamenS采纳,获得10
5秒前
Ava应助DamenS采纳,获得10
5秒前
orixero应助DamenS采纳,获得10
5秒前
思源应助DamenS采纳,获得10
5秒前
fan完成签到,获得积分10
6秒前
打打应助小杨采纳,获得10
6秒前
zokor完成签到 ,获得积分0
7秒前
九龙飞翔完成签到,获得积分10
8秒前
yookia应助koukou采纳,获得10
8秒前
8秒前
lh发布了新的文献求助10
10秒前
阳光的雁易完成签到,获得积分10
11秒前
研友_VZG7GZ应助DamenS采纳,获得10
12秒前
CodeCraft应助DamenS采纳,获得10
12秒前
万能图书馆应助DamenS采纳,获得10
12秒前
慕青应助DamenS采纳,获得10
12秒前
顾矜应助DamenS采纳,获得10
12秒前
慕青应助DamenS采纳,获得10
12秒前
脑洞疼应助DamenS采纳,获得10
12秒前
Jasper应助DamenS采纳,获得10
12秒前
共享精神应助DamenS采纳,获得10
12秒前
wanci应助DamenS采纳,获得10
12秒前
GGGG发布了新的文献求助20
13秒前
14秒前
共享精神应助Baihanyu采纳,获得10
14秒前
忧郁豆芽发布了新的文献求助10
15秒前
16秒前
小萝卜完成签到,获得积分10
17秒前
忧郁书双完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651