Combined approach to capture the evolution of oxidation of Nickel based superalloys using data driven approaches

高温合金 材料科学 聚类分析 人工神经网络 遗传算法 人工智能 计算机科学 机器学习 冶金 合金
作者
Nikhil Khatavkar,Abhishek K. Singh
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (5)
标识
DOI:10.1103/physrevmaterials.8.053601
摘要

Nickel-based superalloys are an exceptional class of materials that are indispensable for high-temperature applications in the aerospace and power sector industries worldwide. The prolonged application of these materials in a demanding environment is hindered by the increased oxidation rates and deformation due to mass gain at high temperatures and the presence of corrosive agents. Calculating the oxidation properties using experimental techniques is laborious and highly cost/time intensive, which presents a considerable challenge to reducing the oxidation in these materials. In this work, we establish an extensive database consisting of the specific mass gain due to oxidation ($\mathrm{\ensuremath{\Delta}}m$) and the parabolic oxidation rates (${\mathrm{k}}_{\mathrm{p}}$) of nickel-based superalloys spanning all the superalloy generations. Highly accurate machine learning (ML) models are developed to predict ($\mathrm{\ensuremath{\Delta}}m$) using artificial neural networks and tree-based XGBoost. The ML models are extended by unsupervised $k$ means clustering to improve the accuracy of the models and generate insights on the composition-property linkages. Additionally, the ML model for ${\mathrm{k}}_{\mathrm{p}}$ developed utilizing XGBoost yields unprecedented results with errors of 0.04. The ML model is analyzed using the SHapely Additive exPlanations parameters to determine the effect of individual features on the model. Further, we employ a genetic algorithm-based approach utilizing the developed ML models to minimize the ${\mathrm{k}}_{\mathrm{p}}$ to improve the performance of the superalloys at high temperatures. The genetic algorithm-assisted optimization successfully yields several compositions for new Ni superalloys with up to 20% reduction in the ${\mathrm{k}}_{\mathrm{p}}$. This work presents essential advances for accelerating the targeted discovery of new materials for highly specialized and demanding applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xg发布了新的文献求助10
1秒前
2秒前
6秒前
NexusExplorer应助优雅海雪采纳,获得10
6秒前
科研通AI5应助heidi采纳,获得10
7秒前
传统的孤丝完成签到 ,获得积分10
8秒前
9秒前
科研通AI5应助susu采纳,获得10
9秒前
10秒前
12秒前
科研通AI2S应助诸笑白采纳,获得10
12秒前
12秒前
12秒前
研友_VZG7GZ应助黄啊涛采纳,获得10
13秒前
迷路的夏之完成签到,获得积分10
14秒前
5114de完成签到,获得积分10
15秒前
大龙哥886发布了新的文献求助30
16秒前
devil发布了新的文献求助10
17秒前
18秒前
徐徐关注了科研通微信公众号
19秒前
思源应助木质素爱好者采纳,获得10
19秒前
Ricardo完成签到 ,获得积分10
22秒前
希望天下0贩的0应助devil采纳,获得10
22秒前
22秒前
Owen应助ubiqutin采纳,获得10
23秒前
油焖青椒发布了新的文献求助10
25秒前
李健应助TT采纳,获得10
25秒前
黎金鑫完成签到,获得积分10
27秒前
27秒前
yuchao_0110完成签到,获得积分10
28秒前
奶盐牙牙乐完成签到 ,获得积分10
29秒前
Santasy发布了新的文献求助10
29秒前
30秒前
呆呆发布了新的文献求助20
30秒前
舒适的平蓝完成签到 ,获得积分10
31秒前
科研通AI5应助Upupcc采纳,获得10
32秒前
32秒前
33秒前
Maestro_S应助英语教育在读采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849