亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combined approach to capture the evolution of oxidation of Nickel based superalloys using data driven approaches

高温合金 材料科学 聚类分析 人工神经网络 遗传算法 人工智能 计算机科学 机器学习 冶金 合金
作者
Nikhil Khatavkar,Abhishek K. Singh
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (5) 被引量:1
标识
DOI:10.1103/physrevmaterials.8.053601
摘要

Nickel-based superalloys are an exceptional class of materials that are indispensable for high-temperature applications in the aerospace and power sector industries worldwide. The prolonged application of these materials in a demanding environment is hindered by the increased oxidation rates and deformation due to mass gain at high temperatures and the presence of corrosive agents. Calculating the oxidation properties using experimental techniques is laborious and highly cost/time intensive, which presents a considerable challenge to reducing the oxidation in these materials. In this work, we establish an extensive database consisting of the specific mass gain due to oxidation ($\mathrm{\ensuremath{\Delta}}m$) and the parabolic oxidation rates (${\mathrm{k}}_{\mathrm{p}}$) of nickel-based superalloys spanning all the superalloy generations. Highly accurate machine learning (ML) models are developed to predict ($\mathrm{\ensuremath{\Delta}}m$) using artificial neural networks and tree-based XGBoost. The ML models are extended by unsupervised $k$ means clustering to improve the accuracy of the models and generate insights on the composition-property linkages. Additionally, the ML model for ${\mathrm{k}}_{\mathrm{p}}$ developed utilizing XGBoost yields unprecedented results with errors of 0.04. The ML model is analyzed using the SHapely Additive exPlanations parameters to determine the effect of individual features on the model. Further, we employ a genetic algorithm-based approach utilizing the developed ML models to minimize the ${\mathrm{k}}_{\mathrm{p}}$ to improve the performance of the superalloys at high temperatures. The genetic algorithm-assisted optimization successfully yields several compositions for new Ni superalloys with up to 20% reduction in the ${\mathrm{k}}_{\mathrm{p}}$. This work presents essential advances for accelerating the targeted discovery of new materials for highly specialized and demanding applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
10秒前
点点发布了新的文献求助10
13秒前
更明发布了新的文献求助10
13秒前
陶醉延恶完成签到,获得积分20
22秒前
陶醉延恶发布了新的文献求助10
28秒前
点点完成签到,获得积分10
32秒前
39秒前
科研通AI5应助huahuao采纳,获得10
47秒前
Lorain完成签到,获得积分20
50秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得30
1分钟前
领导范儿应助科研通管家采纳,获得20
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
nanfang完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
研友_892kOL完成签到,获得积分10
1分钟前
烟景完成签到 ,获得积分10
1分钟前
江姜酱先生完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
SciGPT应助月光奏鸣曲采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
迅速的沧海关注了科研通微信公众号
2分钟前
李爱国应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助花天天开心采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128638
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069