基因敲除
姜黄素
内质网
生物
分子生物学
赫拉
下调和上调
转录因子
细胞
姜黄素
信号转导
免疫印迹
未折叠蛋白反应
细胞培养
细胞生物学
癌症研究
生物化学
基因
遗传学
作者
Minjie Zhang,Mengna Shi,Yang Yu,Rongying Ou,Ren‐Shan Ge,Ping Duan
摘要
Abstract Curcumin has been shown to have antitumor properties, but its low potency and bioavailability has limited its clinical application. We designed a novel curcuminoid, [1‐propyl‐3,5‐bis(2‐bromobenzylidene)‐4‐piperidinone] (PBPD), which has higher antitumor strength and improves bioavailability. Cell counting kit‐8 was used to detect cell activity. Transwell assay was used to detect cell invasion and migration ability. Western blot and quantitative polymerase chain reaction were used to detect protein levels and their messenger RNA expression. Immunofluorescence was used to detect the protein location. PBPD significantly inhibited the proliferation of cervical cancer cells, with an IC 50 value of 4.16 μM for Hela cells and 3.78 μM for SiHa cells, leading to the induction of cuproptosis. Transcriptome sequencing analysis revealed that PBPD significantly inhibited the Notch1/Recombination Signal Binding Protein for Immunoglobulin kappa J Region (RBP‐J) and nuclear factor erythroid 2‐related factor 2 (NRF2) signaling pathways while upregulating ferredoxin 1 (FDX1) expression. Knockdown of Notch1 or RBP‐J significantly inhibited NRF2 expression and upregulated FDX1 expression, leading to the inhibition of nicotinamide adenine dinucleotide phosphate activity and the induction of oxidative stress, which in turn activated endoplasmic reticulum stress and induced cell death. The overexpression of Notch1 or RBP‐J resulted in the enrichment of RBP‐J within the NRF2 promoter region, thereby stimulating NRF2 transcription. NRF2 knockdown resulted in increase in FDX1 expression, leading to cuproptosis. In addition, PBPD inhibited the acidification of tumor niche and reduced cell metabolism to inhibit cervical cancer cell invasion and migration. In conclusion, PBPD significantly inhibits the proliferation, invasion, and migration of cervical cancer cells and may be a novel potential drug candidate for treatment of cervical cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI