Transferable manifold projection embedded dictionary learning for multimode process monitoring

过程(计算) 多模光纤 计算机科学 投影(关系代数) 歧管(流体力学) 词典学习 电子工程 人工智能 工程类 算法 机械工程 光纤 电信 程序设计语言 稀疏逼近
作者
Jie Dong,Ruitao Sun,Chi Zhang,Kaixiang Peng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11
标识
DOI:10.1109/tim.2024.3406796
摘要

This paper proposes a novel transferable manifold projection embedded dictionary learning (TMPDL) based scheme with domain transfer for multimode process (MP) monitoring, where the new modes in evolving scenarios can be rapidly modeled. Considering that only new measurements are necessary for updating the model parameters, the proposed method elevates engineering applicability. Firstly, in order to quantitatively analyze the discrepancy between the new and previous modes, the common features are extracted by TMPDL, upon which new modes can be modeled using domain transfer, saving storage resources and ensuring scalability. Then, the corresponding optimization process is fully discussed, which incorporates feature selection and extraction to select specific features for updating while enhancing the interpretability of the model. Concurrently, consistency and independence constraints are imposed on dictionary learning, which makes the features extracted by the proposed method more discriminative. Finally, the monitoring model is developed by feature reconstruction error, which can derive monitoring results prior to mode identification. Experiments on the real hot strip mill process (HSMP) reveal that the fault detection ability of TMPDL is highly robust against MP, achieving a 94.8% monitoring accuracy rate for the newly arriving mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqfxc发布了新的文献求助10
1秒前
zhuxl完成签到,获得积分10
2秒前
威康宇宙完成签到,获得积分10
2秒前
2秒前
3秒前
cchen0902发布了新的文献求助10
3秒前
在水一方应助cmh采纳,获得10
3秒前
一年能吃800篇sci吗完成签到,获得积分10
3秒前
慕青应助ww采纳,获得10
3秒前
3秒前
3秒前
rosexu完成签到,获得积分10
4秒前
jhlz5879完成签到,获得积分10
4秒前
百宝发布了新的文献求助10
4秒前
Ye发布了新的文献求助10
4秒前
lalala应助搞怪网络采纳,获得20
5秒前
FashionBoy应助渝州人采纳,获得10
5秒前
5秒前
6秒前
6秒前
科研通AI5应助xy采纳,获得10
6秒前
曼冬发布了新的文献求助10
6秒前
上官若男应助sjxx采纳,获得10
6秒前
7秒前
守墓人完成签到 ,获得积分10
7秒前
榴莲完成签到,获得积分10
7秒前
对照完成签到 ,获得积分10
7秒前
8秒前
8秒前
初闻完成签到,获得积分10
9秒前
惠惠发布了新的文献求助10
9秒前
慕青应助a1oft采纳,获得10
10秒前
叶十七完成签到,获得积分10
10秒前
汉堡包应助宇_采纳,获得10
10秒前
SciGPT应助H71000A采纳,获得10
10秒前
侦察兵发布了新的文献求助10
11秒前
自然乐松关注了科研通微信公众号
11秒前
zqfxc完成签到,获得积分10
11秒前
sumeiling完成签到,获得积分20
11秒前
朴素的鸡完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794