Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates

生成语法 小分子 化学 计算生物学 生成设计 生物化学 计算机科学 生物 材料科学 人工智能 复合材料 相容性(地球化学)
作者
Zhenqiao Song,Yunlong Zhao,Wenxian Shi,Wengong Jin,Yang Yang,Lei Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2405.08205
摘要

Enzymes are genetically encoded biocatalysts capable of accelerating chemical reactions. How can we automatically design functional enzymes? In this paper, we propose EnzyGen, an approach to learn a unified model to design enzymes across all functional families. Our key idea is to generate an enzyme's amino acid sequence and their three-dimensional (3D) coordinates based on functionally important sites and substrates corresponding to a desired catalytic function. These sites are automatically mined from enzyme databases. EnzyGen consists of a novel interleaving network of attention and neighborhood equivariant layers, which captures both long-range correlation in an entire protein sequence and local influence from nearest amino acids in 3D space. To learn the generative model, we devise a joint training objective, including a sequence generation loss, a position prediction loss and an enzyme-substrate interaction loss. We further construct EnzyBench, a dataset with 3157 enzyme families, covering all available enzymes within the protein data bank (PDB). Experimental results show that our EnzyGen consistently achieves the best performance across all 323 testing families, surpassing the best baseline by 10.79% in terms of substrate binding affinity. These findings demonstrate EnzyGen's superior capability in designing well-folded and effective enzymes binding to specific substrates with high affinities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拾英发布了新的文献求助10
1秒前
勤恳雅莉举报zhj求助涉嫌违规
1秒前
酷炫觅双完成签到 ,获得积分10
4秒前
FashionBoy应助zzz采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
暮商发布了新的文献求助20
7秒前
张之静发布了新的文献求助10
9秒前
霍笑寒完成签到,获得积分10
10秒前
bkagyin应助激情的诗柳采纳,获得10
11秒前
Criminology34应助拾英采纳,获得10
11秒前
思源应助bbb采纳,获得10
13秒前
majiayang完成签到,获得积分10
13秒前
13秒前
15秒前
mmnn完成签到 ,获得积分10
16秒前
16秒前
科目三应助Stars采纳,获得10
16秒前
qq完成签到 ,获得积分10
16秒前
科研通AI6应助wsh采纳,获得30
17秒前
大个应助小孙要努力采纳,获得10
17秒前
爱笑的冷风完成签到,获得积分10
17秒前
18秒前
xiaoju完成签到,获得积分20
20秒前
科研通AI6应助clingggg采纳,获得10
20秒前
热摩卡完成签到,获得积分20
21秒前
ruochenzu发布了新的文献求助10
21秒前
张之静完成签到,获得积分10
21秒前
大恩区完成签到,获得积分10
22秒前
22秒前
二狗完成签到 ,获得积分10
22秒前
22秒前
李庭福发布了新的文献求助10
23秒前
Casson完成签到,获得积分10
23秒前
23秒前
24秒前
浮游应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571935
求助须知:如何正确求助?哪些是违规求助? 4657106
关于积分的说明 14719349
捐赠科研通 4597960
什么是DOI,文献DOI怎么找? 2523475
邀请新用户注册赠送积分活动 1494279
关于科研通互助平台的介绍 1464385