Abstract P348: Weight Loss of Machine Learning Identified Metabolic Subtypes in Response to Dietary Interventions

医学 减肥 心理干预 老年学 肥胖 内科学 精神科
作者
Xiang Li,Han Feng,Qian Qian,George A. Bray,Frank M. Sacks,Lu Qi
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:149 (Suppl_1)
标识
DOI:10.1161/circ.149.suppl_1.p348
摘要

Introduction: Metabolic syndrome is a constellation of metabolic risk factors. However, various combinations of metabolic disorders may exhibit distinct responses to weight loss interventions. Objective: To identify metabolic subtypes using the machine learning method and assess their associations with weight loss response to dietary interventions. Methods: The study includes 645 participants from the POUNDS Lost trial. Five criteria for metabolic syndrome were used as the grouping factors. Hierarchical clustering was performed with an 8:2 train/test ratio. Results: Three metabolic subtypes were identified and validated among the POUNDS Lost participants. Cluster 1 was characterized by high proportions of central obesity and high blood pressure but low triglycerides; Cluster 2 showed central obesity with relatively low blood pressure; Cluster 3 had the lowest level of central obesity and blood pressure but the highest triglycerides level. Changes in body weight varied significantly across clusters (p=0.003 at 6 months and p< 0.001 at 2 years). At 6 months, adjusted least-square mean (SE) weights were: -6.5 (0.8) kg in cluster 1, -5.4 (0.6) kg in cluster 2, and -4.2 (0.7) kg in cluster 3. Participants regained weight after 6 months, but the difference across the clusters persisted: -5.5 (1.0) kg in Cluster 1, -3.1 (0.8) kg in Cluster 2, and -1.7 (0.8) kg in Cluster 3. Conclusion: We identified 3 metabolic subtypes that predict different responses to dietary weight loss interventions, which may contribute to subtype-specific precision medicine for obesity prevention and management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
byron完成签到,获得积分10
刚刚
加油呀发布了新的文献求助30
1秒前
1秒前
上官若男应助chen采纳,获得10
1秒前
2秒前
ding应助lina采纳,获得10
3秒前
活泼之云发布了新的文献求助10
3秒前
tulips发布了新的文献求助10
3秒前
3秒前
3秒前
小二郎应助Sunshine采纳,获得10
3秒前
凉雨渲发布了新的文献求助10
4秒前
Lucas应助稳重银耳汤采纳,获得10
4秒前
健忘的晓小完成签到,获得积分10
5秒前
任寒松发布了新的文献求助30
5秒前
抹茶发布了新的文献求助10
6秒前
画画完成签到,获得积分10
6秒前
kk2024发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
6秒前
Billy应助淡然的海白采纳,获得20
7秒前
Night完成签到,获得积分10
8秒前
flac完成签到,获得积分10
8秒前
米米米发布了新的文献求助10
8秒前
神奇海螺发布了新的文献求助10
8秒前
9秒前
royan2发布了新的文献求助10
10秒前
10秒前
单薄惜文发布了新的文献求助10
10秒前
在水一方应助二次元喵酱采纳,获得10
10秒前
上上谦完成签到,获得积分10
11秒前
11秒前
辰砂完成签到,获得积分10
11秒前
笑看人生发布了新的文献求助50
12秒前
醉熏的沛容完成签到,获得积分10
12秒前
香蕉觅云应助科研牛人采纳,获得10
13秒前
14秒前
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227527
求助须知:如何正确求助?哪些是违规求助? 2875513
关于积分的说明 8191595
捐赠科研通 2542804
什么是DOI,文献DOI怎么找? 1373054
科研通“疑难数据库(出版商)”最低求助积分说明 646641
邀请新用户注册赠送积分活动 621130