Abstract P348: Weight Loss of Machine Learning Identified Metabolic Subtypes in Response to Dietary Interventions

医学 减肥 心理干预 老年学 肥胖 内科学 精神科
作者
Xiang Li,Han Feng,Qian Qian,George A. Bray,Frank M. Sacks,Lu Qi
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:149 (Suppl_1)
标识
DOI:10.1161/circ.149.suppl_1.p348
摘要

Introduction: Metabolic syndrome is a constellation of metabolic risk factors. However, various combinations of metabolic disorders may exhibit distinct responses to weight loss interventions. Objective: To identify metabolic subtypes using the machine learning method and assess their associations with weight loss response to dietary interventions. Methods: The study includes 645 participants from the POUNDS Lost trial. Five criteria for metabolic syndrome were used as the grouping factors. Hierarchical clustering was performed with an 8:2 train/test ratio. Results: Three metabolic subtypes were identified and validated among the POUNDS Lost participants. Cluster 1 was characterized by high proportions of central obesity and high blood pressure but low triglycerides; Cluster 2 showed central obesity with relatively low blood pressure; Cluster 3 had the lowest level of central obesity and blood pressure but the highest triglycerides level. Changes in body weight varied significantly across clusters (p=0.003 at 6 months and p< 0.001 at 2 years). At 6 months, adjusted least-square mean (SE) weights were: -6.5 (0.8) kg in cluster 1, -5.4 (0.6) kg in cluster 2, and -4.2 (0.7) kg in cluster 3. Participants regained weight after 6 months, but the difference across the clusters persisted: -5.5 (1.0) kg in Cluster 1, -3.1 (0.8) kg in Cluster 2, and -1.7 (0.8) kg in Cluster 3. Conclusion: We identified 3 metabolic subtypes that predict different responses to dietary weight loss interventions, which may contribute to subtype-specific precision medicine for obesity prevention and management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
小飞飞发布了新的文献求助10
1秒前
wangyan完成签到 ,获得积分10
2秒前
zLLz发布了新的文献求助10
3秒前
Orange应助小诗采纳,获得10
3秒前
感性的安露完成签到,获得积分0
4秒前
4秒前
5秒前
xie发布了新的文献求助10
6秒前
DQ8733发布了新的文献求助10
6秒前
WGS完成签到,获得积分10
6秒前
善学以致用应助coollz采纳,获得10
7秒前
ao发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
如意秋珊应助研友_85y6M8采纳,获得10
11秒前
11秒前
风一样的我完成签到 ,获得积分0
12秒前
12秒前
糊涂的勒完成签到,获得积分10
12秒前
12秒前
13秒前
s_chui发布了新的文献求助10
13秒前
14秒前
闪闪完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
梦灵发布了新的文献求助10
15秒前
研友_8yN60L完成签到,获得积分10
15秒前
哈哈哈完成签到,获得积分10
16秒前
aaa完成签到 ,获得积分10
16秒前
华仔应助吴龙采纳,获得10
16秒前
xiiin发布了新的文献求助10
17秒前
17秒前
麻辣香锅完成签到,获得积分10
18秒前
franklin_fsz应助洁洁子采纳,获得50
18秒前
闪闪发布了新的文献求助10
18秒前
19秒前
车骋昊发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434440
求助须知:如何正确求助?哪些是违规求助? 4546716
关于积分的说明 14204115
捐赠科研通 4466772
什么是DOI,文献DOI怎么找? 2448303
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969