Abstract P348: Weight Loss of Machine Learning Identified Metabolic Subtypes in Response to Dietary Interventions

医学 减肥 心理干预 老年学 肥胖 内科学 精神科
作者
Xiang Li,Han Feng,Qian Qian,George A. Bray,Frank M. Sacks,Lu Qi
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:149 (Suppl_1)
标识
DOI:10.1161/circ.149.suppl_1.p348
摘要

Introduction: Metabolic syndrome is a constellation of metabolic risk factors. However, various combinations of metabolic disorders may exhibit distinct responses to weight loss interventions. Objective: To identify metabolic subtypes using the machine learning method and assess their associations with weight loss response to dietary interventions. Methods: The study includes 645 participants from the POUNDS Lost trial. Five criteria for metabolic syndrome were used as the grouping factors. Hierarchical clustering was performed with an 8:2 train/test ratio. Results: Three metabolic subtypes were identified and validated among the POUNDS Lost participants. Cluster 1 was characterized by high proportions of central obesity and high blood pressure but low triglycerides; Cluster 2 showed central obesity with relatively low blood pressure; Cluster 3 had the lowest level of central obesity and blood pressure but the highest triglycerides level. Changes in body weight varied significantly across clusters (p=0.003 at 6 months and p< 0.001 at 2 years). At 6 months, adjusted least-square mean (SE) weights were: -6.5 (0.8) kg in cluster 1, -5.4 (0.6) kg in cluster 2, and -4.2 (0.7) kg in cluster 3. Participants regained weight after 6 months, but the difference across the clusters persisted: -5.5 (1.0) kg in Cluster 1, -3.1 (0.8) kg in Cluster 2, and -1.7 (0.8) kg in Cluster 3. Conclusion: We identified 3 metabolic subtypes that predict different responses to dietary weight loss interventions, which may contribute to subtype-specific precision medicine for obesity prevention and management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
月亮啊完成签到 ,获得积分10
刚刚
现代柠檬发布了新的文献求助10
刚刚
思源应助莫力布林采纳,获得10
刚刚
bodao完成签到,获得积分10
3秒前
行者完成签到,获得积分10
7秒前
elf完成签到,获得积分10
8秒前
9秒前
李健应助HM采纳,获得10
9秒前
慈祥的爆米花完成签到,获得积分10
9秒前
zy发布了新的文献求助10
9秒前
12秒前
C胖胖发布了新的文献求助10
13秒前
深情安青应助zzy采纳,获得10
14秒前
14秒前
Lucky.完成签到 ,获得积分0
14秒前
15秒前
昏睡的白桃完成签到,获得积分10
16秒前
竹马子完成签到,获得积分10
18秒前
迎风发布了新的文献求助10
19秒前
hanqing发布了新的文献求助10
20秒前
haoliangshi发布了新的文献求助10
20秒前
Accpted河豚完成签到,获得积分10
20秒前
20秒前
21秒前
木又权完成签到,获得积分10
22秒前
ll完成签到,获得积分10
23秒前
12321完成签到,获得积分10
23秒前
zzy完成签到,获得积分10
23秒前
小阳肖恩完成签到 ,获得积分10
24秒前
孙玮完成签到,获得积分10
24秒前
老北京完成签到,获得积分10
25秒前
heart完成签到,获得积分10
25秒前
hanqing完成签到,获得积分20
25秒前
Ray发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
28秒前
英姑应助hanqing采纳,获得30
28秒前
cst发布了新的文献求助10
28秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418690
求助须知:如何正确求助?哪些是违规求助? 4534376
关于积分的说明 14143513
捐赠科研通 4450562
什么是DOI,文献DOI怎么找? 2441313
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438