Balancing Objective Optimization and Constraint Satisfaction in Expensive Constrained Evolutionary Multi-Objective Optimization

数学优化 替代模型 进化算法 水准点(测量) 计算机科学 多目标优化 约束(计算机辅助设计) 克里金 进化计算 帕累托原理 局部搜索(优化) 最优化问题 数学 机器学习 几何学 大地测量学 地理
作者
Zhenshou Song,Handing Wang,Bing Xue,Mengjie Zhang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 1286-1300 被引量:21
标识
DOI:10.1109/tevc.2023.3300181
摘要

In dealing with expensive constrained multi-objective optimization problems using surrogate-assisted evolutionary algorithms, it is a great challenge to reduce the negative impact caused by the approximate errors of surrogate models for constraints. To address this issue, we propose a Kriging-assisted evolutionary algorithm with two search modes to adaptively reduce the utilization frequency of surrogate models for constraints. To be more specific, an adaptively switching strategy analyzing the correlation between the objective optimization direction and constraint satisfaction direction is designed to determine whether to build the constraint surrogate models to assist the current evolutionary search. Accordingly, the proposed algorithm contains two search modes: 1) unconstrained surrogate-assisted search mode and 2) constrained surrogate-assisted search mode. In the first search mode, an existing surrogate-assisted evolutionary algorithm without considering constraint is introduced, which rapidly drives the population to move to the feasible region(s) while avoiding the negative effects of the constraint surrogate models. In the second search mode, a novel Kriging-assisted constrained multi-objective optimization algorithm is designed for locating constrained Pareto front in the feasible region. In addition, a data selection strategy is proposed to improve the efficiency and quality of surrogate models for constraint functions. The proposed method has been tested on numerous instances from three popular benchmark test suites. The experimental results demonstrate that the performance of the proposed algorithm outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的牛排完成签到,获得积分10
刚刚
斯文败类应助suo采纳,获得10
刚刚
沙福林完成签到,获得积分10
刚刚
独特的秋应助taowang采纳,获得30
1秒前
疯狂的寻绿完成签到,获得积分10
3秒前
4秒前
4秒前
活力翠霜完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
科研通AI2S应助crazy采纳,获得10
8秒前
9秒前
可爱的函函应助dragon采纳,获得10
9秒前
卜凡发布了新的文献求助10
10秒前
王大纯发布了新的文献求助10
10秒前
10秒前
所所应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
孟醒应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
11秒前
烟花应助科研通管家采纳,获得20
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
领导范儿应助儒雅的菠萝采纳,获得30
11秒前
Linux发布了新的文献求助10
12秒前
yun发布了新的文献求助10
13秒前
pny发布了新的文献求助20
14秒前
14秒前
sui完成签到,获得积分10
16秒前
汉堡包应助王大纯采纳,获得10
17秒前
987完成签到 ,获得积分10
18秒前
甜甜的大米完成签到,获得积分10
18秒前
Driscoll完成签到 ,获得积分10
20秒前
yadi完成签到,获得积分20
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405