Balancing Objective Optimization and Constraint Satisfaction in Expensive Constrained Evolutionary Multi-Objective Optimization

数学优化 替代模型 进化算法 水准点(测量) 计算机科学 多目标优化 约束(计算机辅助设计) 克里金 进化计算 帕累托原理 局部搜索(优化) 最优化问题 数学 机器学习 几何学 大地测量学 地理
作者
Zhenshou Song,Handing Wang,Bing Xue,Mengjie Zhang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 1286-1300 被引量:31
标识
DOI:10.1109/tevc.2023.3300181
摘要

In dealing with expensive constrained multi-objective optimization problems using surrogate-assisted evolutionary algorithms, it is a great challenge to reduce the negative impact caused by the approximate errors of surrogate models for constraints. To address this issue, we propose a Kriging-assisted evolutionary algorithm with two search modes to adaptively reduce the utilization frequency of surrogate models for constraints. To be more specific, an adaptively switching strategy analyzing the correlation between the objective optimization direction and constraint satisfaction direction is designed to determine whether to build the constraint surrogate models to assist the current evolutionary search. Accordingly, the proposed algorithm contains two search modes: 1) unconstrained surrogate-assisted search mode and 2) constrained surrogate-assisted search mode. In the first search mode, an existing surrogate-assisted evolutionary algorithm without considering constraint is introduced, which rapidly drives the population to move to the feasible region(s) while avoiding the negative effects of the constraint surrogate models. In the second search mode, a novel Kriging-assisted constrained multi-objective optimization algorithm is designed for locating constrained Pareto front in the feasible region. In addition, a data selection strategy is proposed to improve the efficiency and quality of surrogate models for constraint functions. The proposed method has been tested on numerous instances from three popular benchmark test suites. The experimental results demonstrate that the performance of the proposed algorithm outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuanxuan发布了新的文献求助10
1秒前
阔达忆秋完成签到 ,获得积分10
1秒前
狂野的芯完成签到,获得积分10
2秒前
2秒前
脑洞疼应助LEI采纳,获得30
3秒前
3秒前
4秒前
yaxuandeng发布了新的文献求助10
4秒前
4秒前
7秒前
7秒前
无敌发布了新的文献求助10
7秒前
hhhhhhmt发布了新的文献求助10
8秒前
chuan发布了新的文献求助10
9秒前
sunlight完成签到,获得积分10
9秒前
qyt完成签到,获得积分10
10秒前
12秒前
英姑应助yaxuandeng采纳,获得10
12秒前
科研通AI6应助刘乐艺采纳,获得30
13秒前
慕青应助明芬采纳,获得10
13秒前
风筝完成签到,获得积分20
13秒前
嘻嘻哈哈应助少侠饶命采纳,获得10
14秒前
念之完成签到 ,获得积分10
14秒前
充电宝应助清脆亦寒采纳,获得10
15秒前
17秒前
小陈完成签到,获得积分10
18秒前
18秒前
大个应助曾曾采纳,获得10
19秒前
19秒前
20秒前
吧嗒蹭完成签到 ,获得积分10
23秒前
陈末完成签到,获得积分10
23秒前
认真的纹发布了新的文献求助10
23秒前
如意元容发布了新的文献求助10
24秒前
淇奥完成签到 ,获得积分10
24秒前
lyj334完成签到,获得积分20
24秒前
cc发布了新的文献求助10
25秒前
Visiony完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284421
求助须知:如何正确求助?哪些是违规求助? 4437898
关于积分的说明 13815346
捐赠科研通 4318875
什么是DOI,文献DOI怎么找? 2370751
邀请新用户注册赠送积分活动 1366060
关于科研通互助平台的介绍 1329581