Enhanced fatigue resistance and fatigue-induced substructures in an additively manufactured CoCrNi medium-entropy alloy treated by ultrasonic surface rolling process

材料科学 疲劳极限 复合材料 位错 固体力学 表层 合金 变形(气象学) 循环应力 应力集中 严重塑性变形 结构工程 冶金 图层(电子) 断裂力学 工程类
作者
Xiyu Chen,Tiwen Lu,Ning Yao,Hongyu Chen,Binhan Sun,Yu Xie,Yufei Chen,Bingbing Wan,Xiancheng Zhang,Shan‐Tung Tu
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:169: 103721-103721 被引量:49
标识
DOI:10.1016/j.ijplas.2023.103721
摘要

There is a significant need to elucidate the underlying mechanisms of cyclic plastic damage mechanism for additively manufactured materials and develop effective surface modification techniques to improve their fatigue life. This study investigates the efficacy of ultrasonic surface rolling process (USRP) technology in the creation of a ∼300 μm gradient nanotwinned structure on the surface of additively manufactured CoCrNi medium-entropy alloy (AM-MEA), which results in a beneficial result that yield strength and 107-cycle fatigue endurance limit are significantly improved, achieving the increment of 192.1 MPa and ∼130 MPa, respectively. The superior fatigue property is attributed to multiple factors that suppress crack initiation from sample surfaces jointly, including the presence of a gradient nanotwinned layer and the reduction in irregular defects located both on and beneath the surface. The cyclic plastic deformation behavior of AM-MEA samples with and without USRP under both high and low stress levels was studied in-depth through multiscale characterization techniques. When exposed to cyclic loading at a low stress level of 480 MPa, the fatigue damages of both samples were dominated by accumulation of statistical stored dislocations (SSDs) and persistent Lüders bands. There is no significant difference in the increase in dislocation density between both samples. However, under cyclic loading at a high stress level (660 MPa), the fatigue damage of the AM-MEA sample primarily originated from the accumulation of deformation nanotwins, stacking faults, geometrically necessary dislocations and SSDs. Conversely, the fatigue damage observed in the AM-MEA sample with USRP at the same stress level was dominant by an increase in stacking faults and SSDs. Notably, this increase in total dislocation density was visibly lower than that observed in the AM-MEA sample, which is ascribe to the stable gradient layer providing enhanced hetero-deformation induced stress for the core region in the AM-MEA sample with USRP at high stress level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的砖头完成签到,获得积分20
1秒前
1秒前
科研通AI6应助小羊医生采纳,获得10
1秒前
2秒前
领导范儿应助在写了采纳,获得10
2秒前
2秒前
2秒前
俄而完成签到 ,获得积分10
2秒前
2秒前
成就的迎夏完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
lilac完成签到,获得积分10
5秒前
mogeko完成签到,获得积分10
5秒前
奋斗若风发布了新的文献求助10
5秒前
明亮雨真发布了新的文献求助10
6秒前
money完成签到 ,获得积分10
6秒前
6秒前
轻松晓曼发布了新的文献求助10
6秒前
6秒前
疯狂的寻绿完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI6应助油条狗采纳,获得10
7秒前
7秒前
7秒前
8秒前
zzz完成签到,获得积分10
8秒前
美满访天完成签到 ,获得积分10
8秒前
呜呼啦呼完成签到 ,获得积分10
8秒前
8秒前
科研通AI6应助多多多芋圆采纳,获得10
8秒前
CeciliaLee发布了新的文献求助10
9秒前
suye发布了新的文献求助10
10秒前
小羊医生完成签到,获得积分10
10秒前
美满访天关注了科研通微信公众号
10秒前
helppppp发布了新的文献求助10
10秒前
桐桐应助123yaoyao采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615406
求助须知:如何正确求助?哪些是违规求助? 4019207
关于积分的说明 12441329
捐赠科研通 3702203
什么是DOI,文献DOI怎么找? 2041500
邀请新用户注册赠送积分活动 1074170
科研通“疑难数据库(出版商)”最低求助积分说明 957802