Prediction performance of the machine learning model in predicting mortality risk in patients with traumatic brain injuries: a systematic review and meta-analysis

荟萃分析 医学 内科学 二元分析 创伤性脑损伤 机器学习 计算机科学 精神科
作者
Jue Wang,Ming Yin,Han Chun Wen
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:23 (1) 被引量:10
标识
DOI:10.1186/s12911-023-02247-8
摘要

Abstract Purpose With the in-depth application of machine learning(ML) in clinical practice, it has been used to predict the mortality risk in patients with traumatic brain injuries(TBI). However, there are disputes over its predictive accuracy. Therefore, we implemented this systematic review and meta-analysis, to explore the predictive value of ML for TBI. Methodology We systematically retrieved literature published in PubMed, Embase.com, Cochrane, and Web of Science as of November 27, 2022. The prediction model risk of bias(ROB) assessment tool (PROBAST) was used to assess the ROB of models and the applicability of reviewed questions. The random-effects model was adopted for the meta-analysis of the C-index and accuracy of ML models, and a bivariate mixed-effects model for the meta-analysis of the sensitivity and specificity. Result A total of 47 papers were eligible, including 156 model, with 122 newly developed ML models and 34 clinically recommended mature tools. There were 98 ML models predicting the in-hospital mortality in patients with TBI; the pooled C-index, sensitivity, and specificity were 0.86 (95% CI: 0.84, 0.87), 0.79 (95% CI: 0.75, 0.82), and 0.89 (95% CI: 0.86, 0.92), respectively. There were 24 ML models predicting the out-of-hospital mortality; the pooled C-index, sensitivity, and specificity were 0.83 (95% CI: 0.81, 0.85), 0.74 (95% CI: 0.67, 0.81), and 0.75 (95% CI: 0.66, 0.82), respectively. According to multivariate analysis, GCS score, age, CT classification, pupil size/light reflex, glucose, and systolic blood pressure (SBP) exerted the greatest impact on the model performance. Conclusion According to the systematic review and meta-analysis, ML models are relatively accurate in predicting the mortality of TBI. A single model often outperforms traditional scoring tools, but the pooled accuracy of models is close to that of traditional scoring tools. The key factors related to model performance include the accepted clinical variables of TBI and the use of CT imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的邹完成签到 ,获得积分10
刚刚
细心的小懒虫完成签到,获得积分10
刚刚
《子非鱼》完成签到,获得积分10
1秒前
linyingo完成签到,获得积分10
1秒前
Magical完成签到,获得积分10
1秒前
飞先生完成签到 ,获得积分20
2秒前
GHL完成签到,获得积分10
2秒前
qweas完成签到,获得积分10
3秒前
清澜庭完成签到,获得积分10
3秒前
4秒前
玛卡巴卡应助向聿采纳,获得10
5秒前
6666完成签到,获得积分10
5秒前
项听蓉完成签到,获得积分10
5秒前
6秒前
彳亍完成签到,获得积分10
6秒前
6秒前
李健的小迷弟应助Michael_li采纳,获得10
6秒前
Cherry完成签到 ,获得积分10
7秒前
动听的笑南完成签到,获得积分10
7秒前
研友_LwMooZ完成签到,获得积分10
7秒前
Nuyoah完成签到,获得积分10
7秒前
脆脆鲨完成签到,获得积分10
8秒前
ZX0501完成签到,获得积分10
8秒前
CHEN完成签到,获得积分10
8秒前
8秒前
含蓄元冬完成签到 ,获得积分10
8秒前
llg发布了新的文献求助10
9秒前
nemo完成签到 ,获得积分10
9秒前
23333发布了新的文献求助10
9秒前
Ava应助彳亍采纳,获得10
10秒前
yy完成签到 ,获得积分10
11秒前
Seanagi发布了新的文献求助150
11秒前
12秒前
wang完成签到,获得积分10
12秒前
务实的绝悟完成签到,获得积分10
13秒前
having完成签到,获得积分10
13秒前
foxbt完成签到,获得积分10
13秒前
123完成签到 ,获得积分10
13秒前
13秒前
wjfan完成签到,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770633
求助须知:如何正确求助?哪些是违规求助? 3315553
关于积分的说明 10177037
捐赠科研通 3030703
什么是DOI,文献DOI怎么找? 1663063
邀请新用户注册赠送积分活动 795273
科研通“疑难数据库(出版商)”最低求助积分说明 756705