材料科学
脆化
等温过程
合金
成核
钛合金
延展性(地球科学)
冶金
相(物质)
热力学
物理
蠕动
有机化学
化学
作者
Florian Brumbauer,Norihiko L. Okamoto,Tetsu Ichitsubo,Wolfgang Sprengel,Martin Luckabauer
出处
期刊:Acta Materialia
[Elsevier]
日期:2023-10-25
卷期号:262: 119466-119466
被引量:14
标识
DOI:10.1016/j.actamat.2023.119466
摘要
A critical characteristic of β-Ti alloys is the inevitable formation of ω-precipitates during certain heat treatments which leads to embrittlement, or even to a complete loss of ductility. Therefore, alloy design with the goal to inhibit the elementary ω-formation process is of utmost importance. Here, we propose a design strategy for prototypical β-type Ti–Cr–(Mo) alloys to alleviate this problem using only minor additions of Sn. Upon addition of Sn, we observed an extensive deceleration or even suppression of the ω-formation kinetics during isothermal ageing. Furthermore, the internal friction response of the elementary formation process indicated a decisive reduction of potential ω-nucleation sites, while the activation energy of the process remained almost unchanged. The results show, that the addition of Sn can significantly increase the width of the time–temperature process window and the long-time ageing resistance of β-Ti alloys, opening up huge opportunities for advanced alloy design and manufacturing routes.
科研通智能强力驱动
Strongly Powered by AbleSci AI