流变学
材料科学
肌原纤维
化学工程
表面张力
乳状液
粘度
微观结构
相(物质)
复合材料
化学
有机化学
生物化学
物理
量子力学
工程类
作者
Feiyu Zhang,Peng Wang,Mingyuan Huang,Xinglian Xu
标识
DOI:10.1016/j.carbpol.2023.121540
摘要
The 3D printability of myofibrillar proteins (MP)-based high internal phase emulsions (HIPEs) is a concern. This study investigated the influence of chitosan (CS) concentrations (0-1.5 wt%) on the physicochemical properties, microstructure, rheological properties, and stability of MP-based HIPEs. Results showed that the interaction between MP and CS efficiently modulated the formation of HIPEs by modifying interfacial tension and network structure. The addition of CS (≤ 0.9 wt%, especially at 0.6 wt%) acted as a spatial barrier, filling the network between droplets, which triggered electrostatic repulsion between CS and MP particles, enhancing MP's interfacial adsorption capacity. Consequently, droplet sizes decreased, emulsion stability increased, and HIPEs became more stable during freeze-thaw cycles, centrifugation, and heat treatment. The rheological analysis further demonstrated that the low energy storage modulus (G', 330.7 Pa) of MP-based HIPEs exhibited sagging and deformation during the self-supporting phase. However, adding CS (0.6 wt%) significantly increased the G' (1034 Pa) of MP-based HIPEs. Conversely, increasing viscosity and spatial resistance attributed to CS (> 0.9 wt%) noticeably caused larger droplet sizes, thereby diminishing the printability of MP-based HIPEs. These findings provide a promising strategy for developing high-performance and consumer-satisfaction 3D printing inks using MP-stabilized HIPEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI