超级电容器
纳米复合材料
氧化钴
氧化物
电化学
储能
电极
化学
纳米技术
钴
化学工程
复合数
石墨烯
过渡金属
材料科学
复合材料
无机化学
催化作用
功率(物理)
物理
生物化学
有机化学
物理化学
量子力学
工程类
作者
Jyotendra Kunwar,Debendra Acharya,Kisan Chhetri,B. Karki,Brahma Deo,Roshan Mangal Bhattarai,Shova Neupane,Mandira Pradhananga Adhikari,Amar Prasad Yadav
标识
DOI:10.1016/j.jelechem.2023.117915
摘要
The 2D layered material, MXene has incited a lot of interest in energy storage research due to its high metallic conductivity, high hydrophilicity, high energy storage capability, biocompatibility, and excellent electrochemical activity due to rich surface chemistry. However, the restacking of MXene layers lowers the number of active sites in MXene, which in turn limits the use of MXene in supercapacitors. Furthermore, the narrow working potential window of MXene limits the energy density of the electrodes. To address these issues and improve the electrochemical performance of MXene, several hierarchical MXene/transition metal oxide composites have been synthesized and characterized. This work explores MXene and its composites with cobalt oxide nanoparticles for supercapacitor applications. The Co@MXene composite was synthesized by using a one-pot hydrothermal method. As prepared, the nanocomposite exhibited a specific capacitance of 732.5 F g−1 at 1 A g-1 current density and excellent cycling stability of 83% over 5000 cycles. The as-fabricated ASC device (Co@MXene-2//AC) demonstrates the maximum energy density of 26.6 Wh Kg−1 at 700 W Kg−1 power density. The above results illustrate that MXene/transition metal oxide nanocomposite can be an alternative to enhance electrochemical performance for energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI