A software defect prediction method based on learnable three-line hybrid feature fusion

计算机科学 降维 人工智能 特征(语言学) 数据挖掘 软件 特征模型 背景(考古学) 维数之咒 冗余(工程) 模式识别(心理学) 机器学习 古生物学 哲学 语言学 生物 程序设计语言 操作系统
作者
Yu Tang,Qi Dai,Ye Du,Lifang Chen,Xuanwen Niu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122409-122409 被引量:12
标识
DOI:10.1016/j.eswa.2023.122409
摘要

Software defect prediction (SDP) plays a crucial role in ensuring the security and quality of software systems. However, it faces challenges posed by high-dimensional features present in software defect datasets and the limited effectiveness of traditional nonlinear dimensionality reduction methods in extracting essential feature information. To address these issues, we propose a novel approach called learnable three-line hybrid feature fusion (LTHFFA), which incorporates the principle of three-line hybrid breeding into feature fusion for the first time. In this method, three distinct dimensionality reduction techniques are initially employed to obtain three separate sets of features. Subsequently, a learnable weight factor feature fusion method is proposed to facilitate automatically learn and dynamically update of feature weights. By integrating the three feature sets based on the principle of three-line hybrid breeding, we derive learnable three-line hybrid fusion features. These features are then utilized in the context of software defect prediction. Experimental results demonstrate the superior performance of LTHFFA compared to nine other dimensionality reduction methods across seventeen publicly available software defect datasets. LTHFFA exhibits the ability to effectively integrate multiple feature sets, reduce feature redundancy, and enhance predictive accuracy. Moreover, statistical analysis using Friedman ranking and Holm's post-hoc test confirms the significant advantage of LTHFFA over alternative dimensionality reduction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九九完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
CipherSage应助阮楷瑞采纳,获得10
2秒前
逆时针发布了新的文献求助10
2秒前
2秒前
2秒前
任某人完成签到 ,获得积分10
2秒前
桐桐应助lrl采纳,获得10
2秒前
3秒前
橙子fy16_完成签到,获得积分10
3秒前
李家龙发布了新的文献求助30
3秒前
FashionBoy应助清脆的妙之采纳,获得10
3秒前
耍酷雁丝完成签到,获得积分10
3秒前
能干完成签到,获得积分10
4秒前
Orange应助volcano采纳,获得10
4秒前
4秒前
CHINA_C13发布了新的文献求助100
4秒前
Alice0210发布了新的文献求助10
5秒前
6秒前
彭于晏应助lcj采纳,获得10
6秒前
6秒前
橙子fy16_发布了新的文献求助10
6秒前
大模型应助zwy采纳,获得10
6秒前
6秒前
6秒前
尹浩宇完成签到,获得积分20
6秒前
Stella应助九九采纳,获得10
7秒前
桐桐应助王玉玺采纳,获得10
7秒前
理想发布了新的文献求助10
7秒前
SciGPT应助Genius采纳,获得10
7秒前
姜姜给姜姜的求助进行了留言
7秒前
小妮子完成签到,获得积分10
8秒前
斯文听寒发布了新的文献求助10
8秒前
好运一点发布了新的文献求助10
8秒前
sdrdggd完成签到,获得积分10
8秒前
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414