计算机科学
自编码
入侵检测系统
字节
交通分类
人工智能
机器学习
编码(内存)
领域(数学分析)
数据挖掘
深度学习
计算机安全
操作系统
网络数据包
数学
数学分析
作者
Zijun Hang,Yuliang Lu,Yongjie Wang,Yi Xie
标识
DOI:10.1145/3607199.3607206
摘要
Malicious traffic classification is crucial for Intrusion Detection Systems (IDS). However, traditional Machine Learning approaches necessitate expert knowledge and a significant amount of well-labeled data. Although recent studies have employed pre-training models from the Natural Language Processing domain, such as ET-BERT, for traffic classification, their effectiveness is impeded by limited input length and fixed Byte Pair Encoding.
科研通智能强力驱动
Strongly Powered by AbleSci AI