超临界流体
阳极
蚀刻(微加工)
材料科学
化学工程
离子
锂离子电池
电池(电)
锂(药物)
扩散
纳米技术
化学
电极
物理化学
有机化学
图层(电子)
功率(物理)
内分泌学
工程类
物理
热力学
医学
量子力学
作者
Qi Tang,Yongbin Wang,Ningjun Chen,Ben Pu,Yue Qing,Mingzhe Zhang,Jia Bai,Yi Yang,Jin Cui,Yan Liu,Bin Zhou,Weiqing Yang
标识
DOI:10.1002/smtd.202300836
摘要
Abstract Nb 4 C 3 T x MXene has shown extraordinary promise for various applications owing to its unique physicochemical properties. However, it can only be synthesized by the traditional HF‐based etching method, which uses large amounts of hazardous HF and requires a long etching time (> 96 h), thus limiting its practical application. Here, an ultra‐efficient and environmental‐friendly H 2 O‐assisted supercritical etching method is proposed for the preparation of Nb 4 C 3 T x MXene. Benefiting from the synergetic effect between supercritical CO 2 (SPC‐CO 2 ) and subcritical H 2 O (SBC‐H 2 O), the etching time for Nb 4 C 3 T x MXene can be dramatically shortened to 1 h. The as‐synthesized Nb 4 C 3 T x MXene possesses uniform accordion‐like morphology and large interlayer spacing. When used as anode for Li‐ion battery, the Nb 4 C 3 T x MXene delivers a high reversible specific capacity of 430 mAh g −1 at 0.1 A g −1 , which is among the highest values achieved in pure‐MXene‐based anodes. The superior lithium storage performance of the Nb 4 C 3 T x MXene can be ascribed to its high conductivity, fast Li + diffusion kinetics and good structural stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI