亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-Stage Self-Adaptive Differential Evolution with Complementary and Ensemble Mutation Strategies for Solving Global Optimization Problems

对偶(语法数字) 差异进化 突变 阶段(地层学) 差速器(机械装置) 计算机科学 数学优化 数学 人工智能 生物 物理 遗传学 哲学 古生物学 语言学 基因 热力学
作者
Bozhen Chen,Haibin Ouyang,Steven Li,Weiping Ding
标识
DOI:10.2139/ssrn.4637755
摘要

Differential Evolution (DE) algorithm is widely employed in tackling various real-world optimization problems due to its remarkable performance. Nonetheless, there is a need for further research to address issues such as high parameter sensitivity and the tendency of optimization capabilities to favour specific applications. This paper introduces a novel DE variant known as LSHADE-Code, designed for solving global optimization problems. This approach incorporates a novel mean calculation mode inspired by the Lehmer mean and leverages linear interpolation to ensure a smooth transition during parameter adjustments. By doing so, it mitigates the issue of premature convergence, which is often encountered in adaptive schemes reliant solely on the weighted Lehmer mean. LSHADE-Code also introduces a novel mutation strategy to enhance search efficiency. It utilizes symmetric complementary mechanisms and leverages the characteristics of Gaussian probability distributions, making it highly adaptable for exploration during the evolutionary phases. Furthermore, we combine this strategy with two other mutation strategies to create a composite approach, enabling the algorithm to dynamically select the most suitable method for individuals. Moreover, by reinforcing the population reduction scheme from LSHADE, LSHADE-Code experiences a faster reduction in population size, thereby improving its capacity for local exploration in the later stages of evolution. This new variant has been thoroughly validated on CEC 2011 and CEC 2020 test suites, with results showcasing LSHADE-Code's strong competitiveness when compared to state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alaa完成签到,获得积分20
14秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
搜集达人应助平常映雁采纳,获得10
32秒前
45秒前
量子星尘发布了新的文献求助10
49秒前
传奇3应助柏风华采纳,获得10
55秒前
Lucas应助Hazel采纳,获得30
56秒前
矢思然完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
柏风华发布了新的文献求助10
1分钟前
Siren发布了新的文献求助30
1分钟前
1分钟前
FashionBoy应助动人的芷天采纳,获得10
1分钟前
1分钟前
嘟嘟完成签到 ,获得积分10
1分钟前
Hazel发布了新的文献求助30
1分钟前
小二郎应助Hazel采纳,获得30
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
洁琼93完成签到 ,获得积分10
2分钟前
cen完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Hazel发布了新的文献求助30
2分钟前
科研通AI5应助洁琼93采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助20
3分钟前
柏风华完成签到,获得积分10
3分钟前
卿霜发布了新的文献求助15
3分钟前
星辰大海应助deepast采纳,获得10
3分钟前
3分钟前
平常映雁发布了新的文献求助10
3分钟前
3分钟前
deepast发布了新的文献求助10
4分钟前
rp发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595381
求助须知:如何正确求助?哪些是违规求助? 4007777
关于积分的说明 12408512
捐赠科研通 3686375
什么是DOI,文献DOI怎么找? 2031815
邀请新用户注册赠送积分活动 1065060
科研通“疑难数据库(出版商)”最低求助积分说明 950410