Dual-Stage Self-Adaptive Differential Evolution with Complementary and Ensemble Mutation Strategies for Solving Global Optimization Problems

对偶(语法数字) 差异进化 突变 阶段(地层学) 差速器(机械装置) 计算机科学 数学优化 数学 人工智能 生物 物理 遗传学 哲学 热力学 基因 古生物学 语言学
作者
Bozhen Chen,Haibin Ouyang,Steven Li,Weiping Ding
标识
DOI:10.2139/ssrn.4637755
摘要

Differential Evolution (DE) algorithm is widely employed in tackling various real-world optimization problems due to its remarkable performance. Nonetheless, there is a need for further research to address issues such as high parameter sensitivity and the tendency of optimization capabilities to favour specific applications. This paper introduces a novel DE variant known as LSHADE-Code, designed for solving global optimization problems. This approach incorporates a novel mean calculation mode inspired by the Lehmer mean and leverages linear interpolation to ensure a smooth transition during parameter adjustments. By doing so, it mitigates the issue of premature convergence, which is often encountered in adaptive schemes reliant solely on the weighted Lehmer mean. LSHADE-Code also introduces a novel mutation strategy to enhance search efficiency. It utilizes symmetric complementary mechanisms and leverages the characteristics of Gaussian probability distributions, making it highly adaptable for exploration during the evolutionary phases. Furthermore, we combine this strategy with two other mutation strategies to create a composite approach, enabling the algorithm to dynamically select the most suitable method for individuals. Moreover, by reinforcing the population reduction scheme from LSHADE, LSHADE-Code experiences a faster reduction in population size, thereby improving its capacity for local exploration in the later stages of evolution. This new variant has been thoroughly validated on CEC 2011 and CEC 2020 test suites, with results showcasing LSHADE-Code's strong competitiveness when compared to state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐柏z完成签到,获得积分10
1秒前
zzt发布了新的文献求助10
2秒前
allzzwell发布了新的文献求助10
2秒前
3秒前
姚姚完成签到 ,获得积分10
3秒前
4秒前
顾矜应助汎影采纳,获得10
4秒前
小周完成签到,获得积分10
5秒前
Gotyababy发布了新的文献求助10
5秒前
6秒前
酷波er应助黑眼圈采纳,获得10
7秒前
Lyg发布了新的文献求助10
7秒前
爱吃萝卜的Bob完成签到,获得积分10
7秒前
今后应助寻光人采纳,获得10
7秒前
zzt完成签到,获得积分10
9秒前
candy完成签到,获得积分10
10秒前
11秒前
赘婿应助灯盏细辛采纳,获得30
11秒前
zyf发布了新的文献求助10
11秒前
白白完成签到,获得积分10
12秒前
12秒前
Gotyababy完成签到,获得积分10
13秒前
传奇3应助张小杰采纳,获得10
13秒前
刘月光发布了新的文献求助30
13秒前
什么都不会完成签到,获得积分10
13秒前
希望天下0贩的0应助Oracle采纳,获得10
14秒前
852应助浮浮世世采纳,获得30
14秒前
14秒前
沉默飞松完成签到,获得积分10
16秒前
杨胜菲完成签到,获得积分20
16秒前
勺子筷子发布了新的文献求助10
17秒前
Tgb发布了新的文献求助10
17秒前
001完成签到,获得积分10
17秒前
18秒前
ccm应助现实的艳一采纳,获得10
18秒前
18秒前
火鸡味锅巴完成签到 ,获得积分10
18秒前
beaver发布了新的文献求助50
18秒前
zyf完成签到,获得积分10
19秒前
烟花应助一团小煤球采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262