Dual-Stage Self-Adaptive Differential Evolution with Complementary and Ensemble Mutation Strategies for Solving Global Optimization Problems

对偶(语法数字) 差异进化 突变 阶段(地层学) 差速器(机械装置) 计算机科学 数学优化 数学 人工智能 生物 物理 遗传学 哲学 古生物学 语言学 基因 热力学
作者
Bozhen Chen,Haibin Ouyang,Steven Li,Weiping Ding
标识
DOI:10.2139/ssrn.4637755
摘要

Differential Evolution (DE) algorithm is widely employed in tackling various real-world optimization problems due to its remarkable performance. Nonetheless, there is a need for further research to address issues such as high parameter sensitivity and the tendency of optimization capabilities to favour specific applications. This paper introduces a novel DE variant known as LSHADE-Code, designed for solving global optimization problems. This approach incorporates a novel mean calculation mode inspired by the Lehmer mean and leverages linear interpolation to ensure a smooth transition during parameter adjustments. By doing so, it mitigates the issue of premature convergence, which is often encountered in adaptive schemes reliant solely on the weighted Lehmer mean. LSHADE-Code also introduces a novel mutation strategy to enhance search efficiency. It utilizes symmetric complementary mechanisms and leverages the characteristics of Gaussian probability distributions, making it highly adaptable for exploration during the evolutionary phases. Furthermore, we combine this strategy with two other mutation strategies to create a composite approach, enabling the algorithm to dynamically select the most suitable method for individuals. Moreover, by reinforcing the population reduction scheme from LSHADE, LSHADE-Code experiences a faster reduction in population size, thereby improving its capacity for local exploration in the later stages of evolution. This new variant has been thoroughly validated on CEC 2011 and CEC 2020 test suites, with results showcasing LSHADE-Code's strong competitiveness when compared to state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
赘婿应助oowt采纳,获得10
1秒前
桐桐应助miosha采纳,获得10
1秒前
1秒前
LaiZiwen发布了新的文献求助10
2秒前
2秒前
00gi发布了新的文献求助10
2秒前
五十圆香芹完成签到,获得积分10
2秒前
ma完成签到,获得积分10
2秒前
研友_VZG7GZ应助月月鸟采纳,获得10
2秒前
3秒前
liujiaying完成签到,获得积分10
3秒前
上官若男应助guo采纳,获得10
3秒前
123完成签到,获得积分10
4秒前
4秒前
爆米花应助蓝不住采纳,获得10
4秒前
沐阳发布了新的文献求助10
4秒前
lu发布了新的文献求助10
5秒前
赵永鹏完成签到,获得积分10
5秒前
5秒前
科研通AI6应助鸿儒采纳,获得10
5秒前
田博文完成签到,获得积分20
5秒前
111发布了新的文献求助10
6秒前
陈陈陈发布了新的文献求助10
6秒前
落寞纲完成签到,获得积分20
6秒前
大聪明发布了新的文献求助10
8秒前
8秒前
Ava应助江南逢李龟年采纳,获得10
8秒前
9秒前
墩墩发布了新的文献求助10
9秒前
hwy发布了新的文献求助10
9秒前
多情的捕完成签到,获得积分10
9秒前
天天快乐应助小新采纳,获得10
10秒前
10秒前
10秒前
Redamancy完成签到 ,获得积分10
10秒前
ZOE应助zhonghuahua采纳,获得30
10秒前
11秒前
haha发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505532
求助须知:如何正确求助?哪些是违规求助? 4601172
关于积分的说明 14475722
捐赠科研通 4535228
什么是DOI,文献DOI怎么找? 2485237
邀请新用户注册赠送积分活动 1468262
关于科研通互助平台的介绍 1440718