Dual-Stage Self-Adaptive Differential Evolution with Complementary and Ensemble Mutation Strategies for Solving Global Optimization Problems

对偶(语法数字) 差异进化 突变 阶段(地层学) 差速器(机械装置) 计算机科学 数学优化 数学 人工智能 生物 物理 遗传学 哲学 古生物学 语言学 基因 热力学
作者
Bozhen Chen,Haibin Ouyang,Steven Li,Weiping Ding
标识
DOI:10.2139/ssrn.4637755
摘要

Differential Evolution (DE) algorithm is widely employed in tackling various real-world optimization problems due to its remarkable performance. Nonetheless, there is a need for further research to address issues such as high parameter sensitivity and the tendency of optimization capabilities to favour specific applications. This paper introduces a novel DE variant known as LSHADE-Code, designed for solving global optimization problems. This approach incorporates a novel mean calculation mode inspired by the Lehmer mean and leverages linear interpolation to ensure a smooth transition during parameter adjustments. By doing so, it mitigates the issue of premature convergence, which is often encountered in adaptive schemes reliant solely on the weighted Lehmer mean. LSHADE-Code also introduces a novel mutation strategy to enhance search efficiency. It utilizes symmetric complementary mechanisms and leverages the characteristics of Gaussian probability distributions, making it highly adaptable for exploration during the evolutionary phases. Furthermore, we combine this strategy with two other mutation strategies to create a composite approach, enabling the algorithm to dynamically select the most suitable method for individuals. Moreover, by reinforcing the population reduction scheme from LSHADE, LSHADE-Code experiences a faster reduction in population size, thereby improving its capacity for local exploration in the later stages of evolution. This new variant has been thoroughly validated on CEC 2011 and CEC 2020 test suites, with results showcasing LSHADE-Code's strong competitiveness when compared to state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chun发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
5秒前
英俊的铭应助外向银耳汤采纳,获得10
6秒前
科研通AI2S应助外向银耳汤采纳,获得10
6秒前
脑洞疼应助朴素的红牛采纳,获得10
6秒前
YY发布了新的文献求助10
7秒前
正方型完成签到,获得积分10
7秒前
Ztx完成签到,获得积分10
8秒前
安静海莲发布了新的文献求助10
8秒前
上官若男应助sniper采纳,获得10
9秒前
狗蛋完成签到,获得积分10
10秒前
jdjd发布了新的文献求助10
10秒前
顾矜应助逝水无痕采纳,获得10
11秒前
liuzan发布了新的文献求助10
12秒前
李健的小迷弟应助YY采纳,获得10
12秒前
13秒前
orixero应助安静海莲采纳,获得10
14秒前
高高的易槐完成签到 ,获得积分20
15秒前
Ava应助Upup采纳,获得30
15秒前
15秒前
852应助Jane采纳,获得10
18秒前
chun完成签到,获得积分10
18秒前
着急的青枫应助Sledge采纳,获得20
21秒前
清晨完成签到,获得积分10
22秒前
递年完成签到,获得积分10
24秒前
25秒前
27秒前
cc发布了新的文献求助10
29秒前
白白白完成签到 ,获得积分10
31秒前
32秒前
32秒前
今后应助科研通管家采纳,获得10
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
慕青应助科研通管家采纳,获得30
33秒前
大个应助科研通管家采纳,获得10
33秒前
隐形曼青应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992