Discovery of Superionic Solid-State Electrolyte for Li-Ion Batteries via Machine Learning

快离子导体 电解质 离子电导率 离子键合 材料科学 离子 卤化物 化学 无机化学 物理化学 电极 有机化学
作者
Seungpyo Kang,Minseon Kim,Kyoungmin Min
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (39): 19335-19343 被引量:7
标识
DOI:10.1021/acs.jpcc.3c02908
摘要

Li-ion solid-state electrolytes (Li-SSEs) hold promise to solve critical issues related to conventional Li-ion batteries (LIBs), such as the flammability of liquid electrolytes and dendrite growth. In this study, we develop a platform involving a high-throughput screening process and machine learning surrogate model for identifying superionic Li-SSEs among 19,480 Li-containing materials. Li-SSE candidates are selected based on the screening criteria, and their ionic conductivities are predicted. For the training database, the ionic conductivities and crystal systems of various inorganic SSEs, such as Na SuperIonic CONductor (NASICON), argyrodite, and halide, are obtained from previous literature. Subsequently, a chemical descriptor (CD), crystal system, and number of atoms are used as machine-readable features. To reduce the uncertainty in the surrogate model, the ensemble method, which considers the two best-performing models, is employed; the mean prediction accuracies are found to be 0.887 and 0.886, respectively. Furthermore, first-principles calculations are conducted to confirm the ionic conductivities of the strong candidates. Finally, three potential superionic Li-SSEs that have not been previously investigated are proposed. We believe that the platform constructed and explored in this work can accelerate the search for Li-SSEs with satisfactory performance at a minimum cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
RMgX完成签到,获得积分10
刚刚
ZD完成签到,获得积分10
1秒前
LX完成签到 ,获得积分10
1秒前
丘伙计完成签到 ,获得积分10
1秒前
3秒前
wenjian完成签到,获得积分10
3秒前
XS_QI完成签到 ,获得积分10
3秒前
感动归尘发布了新的文献求助10
4秒前
5秒前
广旭发布了新的文献求助10
6秒前
7秒前
123发布了新的文献求助10
7秒前
寒冷的寒梦完成签到,获得积分10
7秒前
8秒前
迷了路的猫完成签到,获得积分10
9秒前
啵叽一口完成签到,获得积分10
9秒前
赵赵赵发布了新的文献求助10
14秒前
14秒前
15秒前
神可馨完成签到 ,获得积分10
16秒前
NexusExplorer应助赵赵赵采纳,获得10
17秒前
everyone_woo完成签到,获得积分10
17秒前
酥酥发布了新的文献求助10
19秒前
SYY完成签到,获得积分10
19秒前
Fjj完成签到,获得积分10
19秒前
疯狂的青亦完成签到,获得积分10
20秒前
广旭完成签到,获得积分10
20秒前
坦率的夜玉完成签到,获得积分10
21秒前
某某某发布了新的文献求助10
21秒前
殷勤的白玉完成签到,获得积分10
21秒前
乐乐应助槐夏2466采纳,获得10
21秒前
22秒前
所所应助优雅的盼夏采纳,获得10
23秒前
米九完成签到,获得积分10
24秒前
蜗牛二世完成签到 ,获得积分10
24秒前
包容诗翠完成签到,获得积分10
25秒前
Neonoes完成签到,获得积分10
25秒前
天璇完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460286
求助须知:如何正确求助?哪些是违规求助? 3054453
关于积分的说明 9042401
捐赠科研通 2743845
什么是DOI,文献DOI怎么找? 1505334
科研通“疑难数据库(出版商)”最低求助积分说明 695641
邀请新用户注册赠送积分活动 694916