Discovery of Superionic Solid-State Electrolyte for Li-Ion Batteries via Machine Learning

快离子导体 电解质 离子电导率 离子键合 材料科学 离子 卤化物 化学 无机化学 物理化学 电极 有机化学
作者
Seungpyo Kang,Minseon Kim,Kyoungmin Min
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (39): 19335-19343 被引量:18
标识
DOI:10.1021/acs.jpcc.3c02908
摘要

Li-ion solid-state electrolytes (Li-SSEs) hold promise to solve critical issues related to conventional Li-ion batteries (LIBs), such as the flammability of liquid electrolytes and dendrite growth. In this study, we develop a platform involving a high-throughput screening process and machine learning surrogate model for identifying superionic Li-SSEs among 19,480 Li-containing materials. Li-SSE candidates are selected based on the screening criteria, and their ionic conductivities are predicted. For the training database, the ionic conductivities and crystal systems of various inorganic SSEs, such as Na SuperIonic CONductor (NASICON), argyrodite, and halide, are obtained from previous literature. Subsequently, a chemical descriptor (CD), crystal system, and number of atoms are used as machine-readable features. To reduce the uncertainty in the surrogate model, the ensemble method, which considers the two best-performing models, is employed; the mean prediction accuracies are found to be 0.887 and 0.886, respectively. Furthermore, first-principles calculations are conducted to confirm the ionic conductivities of the strong candidates. Finally, three potential superionic Li-SSEs that have not been previously investigated are proposed. We believe that the platform constructed and explored in this work can accelerate the search for Li-SSEs with satisfactory performance at a minimum cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听听不想读啦完成签到 ,获得积分10
刚刚
刚刚
阿坤驳回了Owen应助
1秒前
1秒前
1秒前
小吴发布了新的文献求助10
1秒前
1秒前
1秒前
文献狗发布了新的文献求助10
2秒前
酷酷的空心菜完成签到,获得积分10
2秒前
3秒前
步步高发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
xiuxue424完成签到,获得积分10
5秒前
优雅盼海发布了新的文献求助10
5秒前
专一的惜霜完成签到,获得积分10
5秒前
chengli完成签到,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
GYH完成签到 ,获得积分10
6秒前
cm发布了新的文献求助10
6秒前
7秒前
liuzhanyu发布了新的文献求助10
7秒前
春天在这李完成签到,获得积分10
8秒前
红红发布了新的文献求助10
8秒前
8秒前
Ki_Ayasato发布了新的文献求助30
8秒前
9秒前
ttt发布了新的文献求助10
9秒前
9秒前
9秒前
南有嘉鱼完成签到 ,获得积分10
9秒前
哈哈完成签到,获得积分20
9秒前
9秒前
Owen应助WW采纳,获得10
10秒前
10秒前
10秒前
10秒前
顺利一江完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190390
求助须知:如何正确求助?哪些是违规求助? 4374194
关于积分的说明 13620019
捐赠科研通 4227906
什么是DOI,文献DOI怎么找? 2319013
邀请新用户注册赠送积分活动 1317523
关于科研通互助平台的介绍 1267494