钙钛矿(结构)
空位缺陷
材料科学
卤化物
密度泛函理论
拉伤
光伏
化学物理
载流子寿命
八面体
结晶学
纳米技术
化学
硅
无机化学
光电子学
计算化学
光伏系统
晶体结构
生态学
生物
医学
内科学
作者
Xin Xu,Yating Cai,Yating Qu,Ang Li,Yujia Gao,Tengcheng Huang,Zhuxia Wu,Xi Huang,Zheyu Zhang,Zhenyuan Wu,Tingting Shi,Weiguang Xie,Pengyi Liu
摘要
Vacancy related defects play a crucial role in optoelectronic properties and carrier transport for photovoltaic materials, especially for its structural evolution becoming non-radiative defects induced by strain. Thus far, the evolution phenomena of vacancy defects in halide perovskite triggered by energy or strain have not been systematically investigated. Herein, we study the change in defect levels occurred in different inorganic perovskite systems and the situation caused by strain in varied strength based on density functional theory calculations. We discover that VI deep levels are easily transformed from shallow levels due to the formation of Pb–Pb dimers and octahedral distortion in all-inorganic perovskites, especially in CsPbI3. Moreover, strain can be quantitatively applied to control the suppression or enhancement of the formation of dimer in CsBI3 (B = Pb/Ge) perovskites. Eventually, our calculation results unravel that the defect physics of VI defect and the formation mechanism of non-radiative center in all inorganic perovskites, which depends on the strain strength and the accompanying octahedral distortion. The strain modulation and its quantitation effect on defect evolution of dominant vacancy map a pioneering route toward fabricating high performance inorganic photovoltaics.
科研通智能强力驱动
Strongly Powered by AbleSci AI