A novel dual-stage progressive enhancement network for single image deraining

计算机科学 块(置换群论) 水准点(测量) 残余物 特征(语言学) 背景(考古学) 像素 人工智能 图像(数学) 模式识别(心理学) 遥感 计算机视觉 算法 地质学 数学 古生物学 语言学 哲学 几何学 大地测量学
作者
Tao Gao,Yuanbo Wen,Jing Zhang,Ting Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107411-107411 被引量:10
标识
DOI:10.1016/j.engappai.2023.107411
摘要

The dense rain accumulation in heavy rain can significantly wash out images and thus destroy the background details of images. Although existing deep rain removal models lead to improved performance for heavy rain removal, we find that most of them ignore the detail reconstruction accuracy of rain-free images. In this paper, we propose a dual-stage progressive enhancement network (DPENet-v2) to achieve effective deraining with structure-accurate rain-free images. Three main modules are included in our framework, namely a rain streaks removal network (R2Net), a details reconstruction network (DRNet) and a cross-stage feature interaction module (CFIM). The former aims to achieve accurate rain removal, and the latter is designed to recover the details of rain-free images. We introduce two main strategies within our networks to achieve trade-off between the effectiveness of deraining and the detail restoration of rain-free images. Firstly, a dilated dense residual block (DDRB) within the rain streaks removal network is presented to aggregate high/low level features of heavy rain. Secondly, an enhanced residual pixel-wise attention block (ERPAB) within the details reconstruction network is designed for context information aggregation. Meanwhile, CFIM learns the long-range dependencies and achieves cross-stage information communication. We also propose a comprehensive loss function to highlight the marginal and regional accuracy of rain-free images. Extensive experiments on benchmark public datasets show both efficiency and effectiveness of the proposed method in achieving structure-preserving rain-free images for heavy rain removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jj7完成签到,获得积分10
刚刚
魔幻小兔子完成签到,获得积分10
2秒前
CHAO发布了新的文献求助10
2秒前
八月发布了新的文献求助10
4秒前
4秒前
Sophia完成签到 ,获得积分10
5秒前
yiyi完成签到,获得积分10
7秒前
犯困完成签到,获得积分10
7秒前
7秒前
10秒前
木头木子完成签到,获得积分10
11秒前
ll关闭了ll文献求助
12秒前
12秒前
小伙子完成签到,获得积分10
12秒前
leeteukxx完成签到,获得积分10
13秒前
15秒前
小野完成签到,获得积分20
15秒前
ZengFly完成签到,获得积分10
15秒前
鱼木完成签到,获得积分10
16秒前
cc完成签到 ,获得积分10
16秒前
蓝天应助魏雨轩采纳,获得10
16秒前
斯文败类应助lala采纳,获得10
16秒前
潘越发布了新的文献求助10
17秒前
压痕完成签到,获得积分20
19秒前
20秒前
20秒前
杉杉发布了新的文献求助10
21秒前
22秒前
文静向南完成签到,获得积分20
23秒前
24秒前
爆米花应助zxy采纳,获得10
24秒前
东方归尘完成签到,获得积分10
24秒前
native发布了新的文献求助10
25秒前
买了束花发布了新的文献求助10
25秒前
26秒前
27秒前
情怀应助屌丝没有爱情采纳,获得10
28秒前
28秒前
彭祖宇发布了新的文献求助10
28秒前
慕青应助dl1995采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546578
求助须知:如何正确求助?哪些是违规求助? 3977757
关于积分的说明 12317153
捐赠科研通 3646147
什么是DOI,文献DOI怎么找? 2008026
邀请新用户注册赠送积分活动 1043602
科研通“疑难数据库(出版商)”最低求助积分说明 932299