Identification of potential molecular targets and repurposed drugs for tuberculosis using network-based screening approach, molecular docking, and simulation

药物数据库 计算生物学 对接(动物) 虚拟筛选 药物发现 药物重新定位 自由能微扰 重新调整用途 分子动力学 结核分枝杆菌 生物 计算机科学 化学 生物信息学 药品 药理学 肺结核 计算化学 医学 病理 护理部 生态学
作者
Arunika Krishnan,Faez Iqbal Khan,Sudarkodi Sukumar,Md. Khurshid Alam Khan
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-19 被引量:1
标识
DOI:10.1080/07391102.2023.2279699
摘要

The spread of drug-resistant strains of tuberculosis has hampered efforts to control the disease worldwide. The Mycobacterium tuberculosis cell wall envelope is dynamic, with complex features that protect it from the host immunological response. As a result, the bacterial cell wall components represent a potential target for drug discovery. Protein-protein interaction networks (PPIN) are critical for understanding disease conditions and identifying precise therapeutic targets. We used a rational theoretical approach by constructing a PPIN with the proteins involved in cell wall biosynthesis. The PPIN was constructed through the STRING database and embB was identified as a key protein by using four topological measures, betweenness, closeness, degree, and eigenvector, in the CytoNCA tool in Cytoscape. The 'Drug repurposing' approach was employed to find suitable inhibitors against embB. We used the Schrödinger suites for molecular docking, molecular dynamics simulation, and binding free energy calculations to validate the binding of protein with the ligand. FDA-approved drugs from the ZINC database and DrugBank were screened against embB (PDB ID: 7BVF) using high-throughput virtual screening, standard precision, and extra precision docking. The drugs were screened based on the XP docking score of the standard drug ethambutol. Accordingly, from the top five hits, azilsartan and dihydroergotamine were selected based on the binding free energy values and were further subjected to Molecular Dynamics Simulation studies for 100 ns. Our study confirms that Azilsartan and Dihydroergotamine form stable complexes with embB and can be used as potential lead molecules based on further in vitro and in vivo experimental validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
偷乐发布了新的文献求助10
2秒前
2秒前
shifeng完成签到,获得积分20
2秒前
可与发布了新的文献求助10
2秒前
3秒前
3秒前
wwwwppp完成签到,获得积分10
3秒前
王文杰完成签到 ,获得积分10
4秒前
牛小蜗完成签到 ,获得积分0
4秒前
博弈春秋发布了新的文献求助10
6秒前
hancahngxiao发布了新的文献求助10
6秒前
久久发布了新的文献求助10
7秒前
tomato发布了新的文献求助10
7秒前
12发布了新的文献求助10
7秒前
7秒前
8秒前
BocchiWu发布了新的文献求助80
8秒前
小饭团子完成签到 ,获得积分10
8秒前
10秒前
10秒前
10秒前
李爱国应助圆圆901234采纳,获得10
11秒前
Liixy发布了新的文献求助10
11秒前
shifeng发布了新的文献求助10
12秒前
12秒前
星辰大海应助可与采纳,获得10
12秒前
tomato完成签到,获得积分10
12秒前
Orange应助顾霜凌采纳,获得10
13秒前
丘比特应助静1111采纳,获得30
13秒前
zhangyu应助顾霜凌采纳,获得10
13秒前
柏林寒冬应助顾霜凌采纳,获得10
13秒前
欢喜藏今发布了新的文献求助10
13秒前
nini发布了新的文献求助10
13秒前
任性唇膏完成签到,获得积分10
13秒前
小饭团子发布了新的文献求助10
14秒前
天天天王完成签到,获得积分10
14秒前
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014