Deep learning-based size prediction for optical trapped nanoparticles and extracellular vesicles from limited bandwidth camera detection

纳米粒子跟踪分析 光学镊子 生物系统 纳米颗粒 尺寸 材料科学 粒径 计算机科学 光学 带宽(计算) 纳米技术 物理 化学 电信 小RNA 生物化学 有机化学 物理化学 微泡 生物 基因
作者
Derrick Ampadu Boateng,Kaiqin Chu,Zachary J. Smith,Jun Du,Yichuan Dai
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:15 (1): 1-1 被引量:1
标识
DOI:10.1364/boe.501430
摘要

Due to its ability to record position, intensity, and intensity distribution information, camera-based monitoring of nanoparticles in optical traps can enable multi-parametric morpho-optical characterization at the single-particle level. However, blurring due to the relatively long (10s of microsecond) integration times and aliasing from the resulting limited temporal bandwidth affect the detected particle position when considering nanoparticles in traps with strong stiffness, leading to inaccurate size predictions. Here, we propose a ResNet-based method for accurate size characterization of trapped nanoparticles, which is trained by considering only simulated time series data of nanoparticles' constrained Brownian motion. Experiments prove the method outperforms state-of-art sizing algorithms such as adjusted Lorentzian fitting or CNN-based networks on both standard nanoparticles and extracellular vesicles (EVs), as well as maintains good accuracy even when measurement times are relatively short (<1s per particle). On samples of clinical EVs, our network demonstrates a well-generalized ability to accurately determine the EV size distribution, as confirmed by comparison with gold-standard nanoparticle tracking analysis (NTA). Furthermore, by combining the sizing network with still frame images from high-speed video, the camera-based optical tweezers have the unique capacity to quantify both the size and refractive index of bio-nanoparticles at the single-particle level. These experiments prove the proposed sizing network as an ideal path for predicting the morphological heterogeneity of bio-nanoparticles in optical potential trapping-related measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
科目三应助落寞的唯雪采纳,获得10
3秒前
Lucas应助深海鱼采纳,获得10
3秒前
4秒前
4秒前
爬得飞快的仲文博完成签到,获得积分10
4秒前
明理囧完成签到 ,获得积分10
4秒前
独孤骄子完成签到 ,获得积分0
5秒前
风趣妙柏发布了新的文献求助10
6秒前
7秒前
搞怪的语薇完成签到,获得积分10
7秒前
8秒前
123发布了新的文献求助10
8秒前
10秒前
单薄的夜南应助壮观的擎采纳,获得10
10秒前
闲花煮茶完成签到,获得积分10
10秒前
11秒前
彳亍完成签到,获得积分10
11秒前
11秒前
单薄的夜南应助尽如采纳,获得50
12秒前
脑洞疼应助yang采纳,获得30
12秒前
13秒前
13秒前
hjmsn发布了新的文献求助10
13秒前
WT发布了新的文献求助10
14秒前
14秒前
zou完成签到,获得积分10
14秒前
14秒前
夏日香气发布了新的文献求助10
14秒前
深海鱼发布了新的文献求助10
15秒前
wwwccc发布了新的文献求助10
16秒前
18秒前
chengwang发布了新的文献求助10
19秒前
hhh完成签到 ,获得积分10
20秒前
情怀应助小巧的烤鸡采纳,获得10
20秒前
英姑应助风趣妙柏采纳,获得10
20秒前
22秒前
hjmsn完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014