亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel federated learning approach with knowledge transfer for credit scoring

计算机科学 知识转移 知识管理
作者
Zhongyi Wang,Jin Xiao,Lu Wang,Yao Jian-rong
出处
期刊:Decision Support Systems [Elsevier]
卷期号:177: 114084-114084 被引量:41
标识
DOI:10.1016/j.dss.2023.114084
摘要

The expanding availability of data in the financial sector promises to take the performance of machine learning models to a new level. However, given the high business value and confidentiality of credit data, the integration of datasets from multiple institutions for credit scoring modeling may result in privacy leakage. Consequently, in this paper, a horizontal federated learning paradigm is used to protect the local private data of each participant and collaborate to train a powerful shared global model. However, in the collaborative training process, heterogeneous data distributions can result in insufficient learning of the model. To overcome this issue, we propose the federated knowledge transfer (FedKT) method, which exploits the advantages of fine-tuning and knowledge distillation to effectively extract generic and specific knowledge from the early layers and outputs of the global model, respectively, thus improving the learning performance of the local models. We adopt five credit datasets and four performance measures to demonstrate the effectiveness of our proposed method. The experimental results show that the proposed method can securely utilize credit data from different parties to improve the performance of the credit scoring model. This also supports the potential of our proposed method for further applications in credit scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
cc发布了新的文献求助10
2秒前
星辰大海应助BeanHahn采纳,获得10
2秒前
zhuxiaoyue完成签到,获得积分10
5秒前
8秒前
17秒前
17秒前
桐桐应助喝可乐也很好采纳,获得20
20秒前
君兰完成签到,获得积分10
21秒前
22秒前
24秒前
slby完成签到 ,获得积分10
25秒前
君兰发布了新的文献求助10
27秒前
友好碧完成签到 ,获得积分10
29秒前
乐观的月亮完成签到,获得积分10
34秒前
34秒前
zhuxiaoyue发布了新的文献求助10
34秒前
打打应助辉辉采纳,获得10
34秒前
美美完成签到,获得积分20
36秒前
39秒前
41秒前
43秒前
BeanHahn发布了新的文献求助10
43秒前
44秒前
阿离完成签到,获得积分10
45秒前
47秒前
无题完成签到,获得积分10
47秒前
辉辉发布了新的文献求助10
48秒前
50秒前
51秒前
53秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
小蘑菇应助科研通管家采纳,获得10
54秒前
55秒前
56秒前
chenyue233完成签到,获得积分10
56秒前
specium发布了新的文献求助10
58秒前
chenyue233发布了新的文献求助10
1分钟前
大个应助ECD采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671