A novel federated learning approach with knowledge transfer for credit scoring

计算机科学 知识转移 知识管理
作者
Zhongyi Wang,Jin Xiao,Lu Wang,Yao Jian-rong
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:177: 114084-114084 被引量:23
标识
DOI:10.1016/j.dss.2023.114084
摘要

The expanding availability of data in the financial sector promises to take the performance of machine learning models to a new level. However, given the high business value and confidentiality of credit data, the integration of datasets from multiple institutions for credit scoring modeling may result in privacy leakage. Consequently, in this paper, a horizontal federated learning paradigm is used to protect the local private data of each participant and collaborate to train a powerful shared global model. However, in the collaborative training process, heterogeneous data distributions can result in insufficient learning of the model. To overcome this issue, we propose the federated knowledge transfer (FedKT) method, which exploits the advantages of fine-tuning and knowledge distillation to effectively extract generic and specific knowledge from the early layers and outputs of the global model, respectively, thus improving the learning performance of the local models. We adopt five credit datasets and four performance measures to demonstrate the effectiveness of our proposed method. The experimental results show that the proposed method can securely utilize credit data from different parties to improve the performance of the credit scoring model. This also supports the potential of our proposed method for further applications in credit scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴烟ZYM发布了新的文献求助30
1秒前
share完成签到,获得积分10
3秒前
3秒前
黑猫警长发布了新的文献求助10
4秒前
朴实山彤发布了新的文献求助10
4秒前
Ohhruby完成签到,获得积分10
4秒前
酷波er应助坐亭下采纳,获得10
5秒前
6秒前
6秒前
vffg发布了新的文献求助10
6秒前
秋夏发布了新的文献求助20
7秒前
xinxinbaby发布了新的文献求助10
9秒前
薅住科研的头发完成签到,获得积分10
10秒前
Joanna发布了新的文献求助10
12秒前
脑洞疼应助Fengliguantou采纳,获得10
13秒前
14秒前
酷波er应助科多兽骑士采纳,获得10
15秒前
小马甲应助xiaoming采纳,获得10
15秒前
16秒前
达达完成签到,获得积分10
16秒前
黑猫警长完成签到,获得积分10
17秒前
zhou发布了新的文献求助30
17秒前
17秒前
Zoki完成签到,获得积分10
18秒前
cigar发布了新的文献求助10
18秒前
ting发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
舍曲林完成签到,获得积分10
20秒前
傻傻的凤灵应助nkuwangkai采纳,获得10
20秒前
张雷举报小李求助涉嫌违规
20秒前
ShenLi应助xinxinbaby采纳,获得10
21秒前
21秒前
21秒前
坐亭下发布了新的文献求助10
22秒前
23秒前
麒麟发布了新的文献求助20
23秒前
24秒前
Archy发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496