A novel federated learning approach with knowledge transfer for credit scoring

计算机科学 知识转移 知识管理
作者
Zhongyi Wang,Jin Xiao,Lu Wang,Yao Jian-rong
出处
期刊:Decision Support Systems [Elsevier]
卷期号:177: 114084-114084 被引量:41
标识
DOI:10.1016/j.dss.2023.114084
摘要

The expanding availability of data in the financial sector promises to take the performance of machine learning models to a new level. However, given the high business value and confidentiality of credit data, the integration of datasets from multiple institutions for credit scoring modeling may result in privacy leakage. Consequently, in this paper, a horizontal federated learning paradigm is used to protect the local private data of each participant and collaborate to train a powerful shared global model. However, in the collaborative training process, heterogeneous data distributions can result in insufficient learning of the model. To overcome this issue, we propose the federated knowledge transfer (FedKT) method, which exploits the advantages of fine-tuning and knowledge distillation to effectively extract generic and specific knowledge from the early layers and outputs of the global model, respectively, thus improving the learning performance of the local models. We adopt five credit datasets and four performance measures to demonstrate the effectiveness of our proposed method. The experimental results show that the proposed method can securely utilize credit data from different parties to improve the performance of the credit scoring model. This also supports the potential of our proposed method for further applications in credit scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太复古可以完成签到,获得积分20
刚刚
123完成签到,获得积分10
刚刚
彭于晏应助七七采纳,获得10
刚刚
YingyingFan发布了新的文献求助10
1秒前
大古发布了新的文献求助10
2秒前
赘婿应助朴素代秋采纳,获得10
2秒前
doing发布了新的文献求助10
2秒前
小吉麻麻发布了新的文献求助10
2秒前
123关注了科研通微信公众号
3秒前
GG应助认真的不评采纳,获得40
3秒前
情怀应助WWK13采纳,获得10
3秒前
3秒前
yike发布了新的文献求助10
4秒前
4秒前
碧海流花完成签到,获得积分10
4秒前
赘婿应助小yo超爱学采纳,获得10
4秒前
今后应助杜薇薇采纳,获得10
4秒前
张皓123完成签到,获得积分10
4秒前
charlie完成签到,获得积分10
4秒前
Ade阿德完成签到,获得积分10
5秒前
5秒前
5秒前
脑洞疼应助狗大王采纳,获得30
6秒前
漠之梦完成签到,获得积分10
6秒前
张雯雯发布了新的文献求助10
7秒前
7秒前
科研通AI6应助B站萧亚轩采纳,获得10
7秒前
英姑应助B站萧亚轩采纳,获得10
8秒前
科研通AI6应助B站萧亚轩采纳,获得10
8秒前
万信心完成签到,获得积分10
8秒前
完美世界应助B站萧亚轩采纳,获得10
8秒前
科研通AI6应助B站萧亚轩采纳,获得10
8秒前
科研通AI6应助B站萧亚轩采纳,获得10
8秒前
科研通AI6应助B站萧亚轩采纳,获得30
8秒前
共享精神应助B站萧亚轩采纳,获得10
8秒前
研友_VZG7GZ应助B站萧亚轩采纳,获得10
8秒前
英俊的铭应助Annie采纳,获得10
8秒前
独特天问完成签到,获得积分10
8秒前
Ksharp10完成签到,获得积分10
8秒前
852应助ly采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731