Advancements in oral and maxillofacial surgery medical images segmentation techniques: An overview

分割 计算机科学 口腔颌面外科 手术计划 放射治疗计划 图像分割 人工智能 医学物理学 深度学习 医学 牙科 放射科 放射治疗
作者
Lang Zhang,Wang Li,Jinxun Lv,Jiajie Xu,Hengyu Zhou,Gen Li,Keqi Ai
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:138: 104727-104727 被引量:4
标识
DOI:10.1016/j.jdent.2023.104727
摘要

This article reviews recent advances in computer-aided segmentation methods for oral and maxillofacial surgery and describes the advantages and limitations of these methods. The objective is to provide an invaluable resource for precise therapy and surgical planning in oral and maxillofacial surgery. Study selection, data and sources: This review includes full-text articles and conference proceedings reporting the application of segmentation methods in the field of oral and maxillofacial surgery. The research focuses on three aspects: tooth detection segmentation, mandibular canal segmentation and alveolar bone segmentation. The most commonly used imaging technique is CBCT, followed by conventional CT and Orthopantomography. A systematic electronic database search was performed up to July 2023 (Medline via PubMed, IEEE Xplore, ArXiv, Google Scholar were searched). These segmentation methods can be mainly divided into two categories: traditional image processing and machine learning (including deep learning). Performance testing on a dataset of images labeled by medical professionals shows that it performs similarly to dentists' annotations, confirming its effectiveness. However, no studies have evaluated its practical application value. Segmentation methods (particularly deep learning methods) have demonstrated unprecedented performance, while inherent challenges remain, including the scarcity and inconsistency of datasets, visible artifacts in images, unbalanced data distribution, and the "black box" nature. Accurate image segmentation is critical for precise treatment and surgical planning in oral and maxillofacial surgery. This review aims to facilitate more accurate and effective surgical treatment planning among dental researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18922406869发布了新的文献求助10
2秒前
几木发布了新的文献求助10
2秒前
英俊绿海完成签到 ,获得积分10
3秒前
6秒前
6秒前
10秒前
miaojuly发布了新的文献求助10
13秒前
哈哈发布了新的文献求助10
15秒前
冷静机器猫完成签到,获得积分10
17秒前
几木发布了新的文献求助30
18秒前
冬冬完成签到 ,获得积分10
20秒前
领导范儿应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
蓝浅完成签到 ,获得积分10
22秒前
23秒前
25秒前
Follow完成签到,获得积分20
28秒前
嘻哈发布了新的文献求助10
28秒前
鱼儿完成签到,获得积分10
29秒前
30秒前
34秒前
小王想要飞完成签到 ,获得积分10
36秒前
杨青青完成签到,获得积分10
36秒前
Cll完成签到 ,获得积分10
40秒前
SCI发布了新的文献求助20
41秒前
42秒前
yanjiuhuzu完成签到 ,获得积分10
42秒前
卑微学术人完成签到 ,获得积分10
43秒前
43秒前
43秒前
哈哈完成签到,获得积分20
44秒前
48秒前
forest发布了新的文献求助10
50秒前
54秒前
55秒前
西风白马完成签到,获得积分20
57秒前
57秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372734
求助须知:如何正确求助?哪些是违规求助? 2990358
关于积分的说明 8740196
捐赠科研通 2673904
什么是DOI,文献DOI怎么找? 1464748
科研通“疑难数据库(出版商)”最低求助积分说明 677662
邀请新用户注册赠送积分活动 669054