MSFFA-YOLO Network: Multiclass Object Detection for Traffic Investigations in Foggy Weather

能见度 子网 计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 特征提取 任务(项目管理) 特征(语言学) 模式识别(心理学) 哲学 经济 管理 光学 语言学 物理 计算机网络
作者
Qiang Zhang,Xiaojian Hu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:7
标识
DOI:10.1109/tim.2023.3318671
摘要

Despite significant progress in vision-based detection methods, the task of detecting traffic objects in foggy weather remains challenging. The presence of fog reduces visibility, which in turn affects the information of traffic objects in videos. However, accurate information regarding the localization and classification of traffic objects is crucial for certain traffic investigations. In this paper, we focus on presenting a multi-class object detection method, namely MSFFA-YOLO network, that can be trained and jointly achieve three tasks: visibility enhancement, object classification, and object localization. In the network, we employ the enhanced YOLOv7 as a detection subnet, which is responsible for learning to locate and classify objects. In the restoration subnet, the multi-scale feature fusion attention (MSFFA) structure is presented for visibility enhancement. The experimental results on the synthetic foggy datasets show that the presented MSFFA-YOLO can achieve 64.6 percent accuracy on the FC005 dataset, 67.3 percent accuracy on the FC01 dataset, and 65.7 percent accuracy on the FC02 dataset. When evaluated on the natural foggy datasets, the presented MSFFA-YOLO can achieve 84.7 percent accuracy on the RTTS dataset and 84.1 percent accuracy on the RW dataset, indicating its ability to accurately detect multi-class traffic objects in real and foggy weather. And the experimental results show that the presented MSFFA-YOLO can achieve the efficiency of 37 FPS. Lastly, the experimental results demonstrate the excellent performance of our presented method for object localization and classification in foggy weather. And when detecting concealed traffic objects in foggy weather, our presented method exhibits superior accuracy. These results substantiate the applicability of our presented method for traffic investigations in foggy weather.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS完成签到,获得积分10
1秒前
小文殊完成签到 ,获得积分10
3秒前
顾矜应助susan采纳,获得10
3秒前
清秋完成签到,获得积分10
5秒前
Owen应助yr采纳,获得10
6秒前
7秒前
田様应助Puokn采纳,获得10
7秒前
8秒前
yuanhao完成签到,获得积分10
8秒前
9秒前
美丽依波发布了新的文献求助30
10秒前
tuanheqi应助清秀的语山采纳,获得50
10秒前
kkk完成签到 ,获得积分10
10秒前
鄂成危发布了新的文献求助10
11秒前
12秒前
13秒前
wqq关注了科研通微信公众号
13秒前
星陨发布了新的文献求助10
14秒前
四公子未敢言完成签到,获得积分0
14秒前
15秒前
yr发布了新的文献求助10
17秒前
susan发布了新的文献求助10
17秒前
Even发布了新的文献求助10
18秒前
路漫漫完成签到 ,获得积分10
18秒前
嘿嘿嘿嘿发布了新的文献求助10
20秒前
20秒前
爆米花应助冰淇淋采纳,获得10
22秒前
23秒前
米奇发布了新的文献求助10
26秒前
oceanao应助星陨采纳,获得10
27秒前
shiqiang mu发布了新的文献求助10
27秒前
29秒前
鄂成危发布了新的文献求助10
29秒前
丘比特应助风中忆枫采纳,获得10
30秒前
爆米花应助copy采纳,获得10
31秒前
Cloud应助葡萄成熟采纳,获得30
31秒前
32秒前
360071717发布了新的文献求助10
32秒前
34秒前
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919