MSFFA-YOLO Network: Multiclass Object Detection for Traffic Investigations in Foggy Weather

能见度 子网 计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 特征提取 任务(项目管理) 特征(语言学) 模式识别(心理学) 哲学 经济 管理 光学 语言学 物理 计算机网络
作者
Qiang Zhang,Xiaojian Hu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:29
标识
DOI:10.1109/tim.2023.3318671
摘要

Despite significant progress in vision-based detection methods, the task of detecting traffic objects in foggy weather remains challenging. The presence of fog reduces visibility, which in turn affects the information of traffic objects in videos. However, accurate information regarding the localization and classification of traffic objects is crucial for certain traffic investigations. In this paper, we focus on presenting a multi-class object detection method, namely MSFFA-YOLO network, that can be trained and jointly achieve three tasks: visibility enhancement, object classification, and object localization. In the network, we employ the enhanced YOLOv7 as a detection subnet, which is responsible for learning to locate and classify objects. In the restoration subnet, the multi-scale feature fusion attention (MSFFA) structure is presented for visibility enhancement. The experimental results on the synthetic foggy datasets show that the presented MSFFA-YOLO can achieve 64.6 percent accuracy on the FC005 dataset, 67.3 percent accuracy on the FC01 dataset, and 65.7 percent accuracy on the FC02 dataset. When evaluated on the natural foggy datasets, the presented MSFFA-YOLO can achieve 84.7 percent accuracy on the RTTS dataset and 84.1 percent accuracy on the RW dataset, indicating its ability to accurately detect multi-class traffic objects in real and foggy weather. And the experimental results show that the presented MSFFA-YOLO can achieve the efficiency of 37 FPS. Lastly, the experimental results demonstrate the excellent performance of our presented method for object localization and classification in foggy weather. And when detecting concealed traffic objects in foggy weather, our presented method exhibits superior accuracy. These results substantiate the applicability of our presented method for traffic investigations in foggy weather.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
杨杨发布了新的文献求助10
1秒前
1秒前
伯赏雁蓉发布了新的文献求助10
1秒前
1秒前
JamesPei应助细心冷雁采纳,获得10
2秒前
2秒前
科研通AI2S应助YHK采纳,获得20
3秒前
kai发布了新的文献求助10
3秒前
李泽锐完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
动听幻儿发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
刻苦映波发布了新的文献求助10
5秒前
不止发布了新的文献求助10
5秒前
5秒前
Owen应助liangmh采纳,获得10
5秒前
赘婿应助鳗鱼思真采纳,获得10
6秒前
6秒前
6秒前
majun发布了新的文献求助10
6秒前
6秒前
相金鹏完成签到,获得积分10
7秒前
7秒前
7秒前
二小完成签到 ,获得积分10
7秒前
Owen应助jasontian1990采纳,获得10
8秒前
青山发布了新的文献求助10
8秒前
帅气的方盒完成签到,获得积分10
8秒前
mmichaell发布了新的文献求助30
9秒前
zxj发布了新的文献求助10
10秒前
10秒前
怡然千琴发布了新的文献求助10
10秒前
啦啦啦完成签到 ,获得积分10
10秒前
泽锦臻发布了新的文献求助10
11秒前
王鑫发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594