MSFFA-YOLO Network: Multiclass Object Detection for Traffic Investigations in Foggy Weather

能见度 子网 计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 特征提取 任务(项目管理) 特征(语言学) 模式识别(心理学) 哲学 经济 管理 光学 语言学 物理 计算机网络
作者
Qiang Zhang,Xiaojian Hu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:12
标识
DOI:10.1109/tim.2023.3318671
摘要

Despite significant progress in vision-based detection methods, the task of detecting traffic objects in foggy weather remains challenging. The presence of fog reduces visibility, which in turn affects the information of traffic objects in videos. However, accurate information regarding the localization and classification of traffic objects is crucial for certain traffic investigations. In this paper, we focus on presenting a multi-class object detection method, namely MSFFA-YOLO network, that can be trained and jointly achieve three tasks: visibility enhancement, object classification, and object localization. In the network, we employ the enhanced YOLOv7 as a detection subnet, which is responsible for learning to locate and classify objects. In the restoration subnet, the multi-scale feature fusion attention (MSFFA) structure is presented for visibility enhancement. The experimental results on the synthetic foggy datasets show that the presented MSFFA-YOLO can achieve 64.6 percent accuracy on the FC005 dataset, 67.3 percent accuracy on the FC01 dataset, and 65.7 percent accuracy on the FC02 dataset. When evaluated on the natural foggy datasets, the presented MSFFA-YOLO can achieve 84.7 percent accuracy on the RTTS dataset and 84.1 percent accuracy on the RW dataset, indicating its ability to accurately detect multi-class traffic objects in real and foggy weather. And the experimental results show that the presented MSFFA-YOLO can achieve the efficiency of 37 FPS. Lastly, the experimental results demonstrate the excellent performance of our presented method for object localization and classification in foggy weather. And when detecting concealed traffic objects in foggy weather, our presented method exhibits superior accuracy. These results substantiate the applicability of our presented method for traffic investigations in foggy weather.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
和谐以冬完成签到,获得积分10
2秒前
yuer发布了新的文献求助10
2秒前
2秒前
晚枫歌完成签到,获得积分10
2秒前
lc完成签到,获得积分10
2秒前
张大彪完成签到,获得积分10
3秒前
3秒前
哈鲤完成签到,获得积分10
3秒前
SciGPT应助宫冷雁采纳,获得10
4秒前
songflower完成签到,获得积分10
4秒前
烦人应助冯尔蓝采纳,获得10
4秒前
5秒前
hhh关闭了hhh文献求助
5秒前
Diss发布了新的文献求助10
5秒前
叶子发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
快乐难敌发布了新的文献求助10
6秒前
nan发布了新的文献求助30
6秒前
李禾和发布了新的文献求助10
6秒前
6秒前
西门博超发布了新的文献求助10
7秒前
望春风完成签到 ,获得积分10
7秒前
7秒前
8秒前
三三发布了新的文献求助10
8秒前
斯文败类应助爱听歌契采纳,获得10
9秒前
彩色溪灵关注了科研通微信公众号
9秒前
李爱国应助熬夜的桃子采纳,获得10
9秒前
懒羊羊发布了新的文献求助10
10秒前
领导范儿应助乐呵呵采纳,获得10
10秒前
传奇3应助AireenBeryl531采纳,获得30
10秒前
10秒前
Owen应助上好佳采纳,获得10
10秒前
大模型应助积极紫翠采纳,获得10
11秒前
11秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813