SFC-Sup: Robust Two-Stage Underwater Acoustic Target Recognition Method Based on Supervised Contrastive Learning

计算机科学 模式识别(心理学) 人工智能 特征(语言学) 特征提取 水下 语音识别 光学(聚焦) 不变(物理) 理论(学习稳定性) 过程(计算) 机器学习 数学 哲学 海洋学 语言学 物理 光学 数学物理 地质学 操作系统
作者
P. Y. Zhu,Yonggang Zhang,Yulong Huang,Boqiang Lin,M.Q. Zhu,Kunlong Zhao,Fuheng Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-23 被引量:1
标识
DOI:10.1109/tgrs.2023.3329653
摘要

This paper presents an underwater acoustic target recognition method to reduce recognition errors in continuous recordings caused by variations in ship operating conditions. The proposed method comprises two-stages: the spectral feature classification and the supervised contrastive learning, and it is called as SFC-Sup as a result in this paper. In the first stage, a new spectral feature classification strategy is designed to choose appropriate feature sets for contrastive learning, based on which an instance discrimination pretext task is created by utilizing different spectral features to capture invariant features across segments under different operating conditions. In the second stage, a dynamic weighted loss function is introduced to guide the joint optimization process in the framework of contrastive learning. Different to existing methods which focus on improving the recognition accuracy by designing features for individual segments, the proposed two-stage method SFC-Sup considers consistent features across diverse segments, which is expected to improve recognition accuracy in a continuous recording. Experimental results demonstrate that in the presence of complex operating conditions, SFC-Sup exhibits superior stability and enhances recognition accuracy by 2.06% compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郗妫完成签到,获得积分10
1秒前
univ完成签到,获得积分10
2秒前
3秒前
打打应助haoguo采纳,获得10
4秒前
linuo应助细心以菱采纳,获得10
4秒前
Ilyas0525完成签到,获得积分10
4秒前
阿元应助灵巧妙芙采纳,获得10
5秒前
赵子轩发布了新的文献求助10
5秒前
5秒前
充电宝应助小陈采纳,获得10
5秒前
5秒前
丘比特应助why采纳,获得10
6秒前
7秒前
共享精神应助欢呼学姐采纳,获得10
7秒前
茄子完成签到,获得积分20
7秒前
zhukun完成签到,获得积分10
8秒前
Hello应助fwt采纳,获得10
8秒前
yyz发布了新的文献求助10
9秒前
深情安青应助小马一家采纳,获得10
9秒前
10秒前
研友_VZG7GZ应助小新同学采纳,获得10
10秒前
茄子发布了新的文献求助10
11秒前
gnr2000完成签到,获得积分0
11秒前
思源应助llq采纳,获得10
12秒前
hilbertbo完成签到 ,获得积分10
12秒前
科研通AI2S应助无名采纳,获得10
13秒前
xywang应助lucky采纳,获得10
15秒前
dawnyue应助DJ想吃饭了采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
安静碧灵发布了新的文献求助10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Singularity应助科研通管家采纳,获得20
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
今后应助dongli6536采纳,获得10
16秒前
PPP完成签到 ,获得积分10
16秒前
xjcy应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144133
求助须知:如何正确求助?哪些是违规求助? 2795764
关于积分的说明 7816509
捐赠科研通 2451813
什么是DOI,文献DOI怎么找? 1304705
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419