SFC-Sup: Robust Two-Stage Underwater Acoustic Target Recognition Method Based on Supervised Contrastive Learning

计算机科学 模式识别(心理学) 人工智能 特征(语言学) 特征提取 水下 语音识别 光学(聚焦) 不变(物理) 理论(学习稳定性) 机器学习 数学 哲学 海洋学 语言学 物理 光学 数学物理 地质学
作者
Pengsen Zhu,Yonggang Zhang,Yulong Huang,Boqiang Lin,M.Q. Zhu,Kunlong Zhao,Fuheng Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-23 被引量:4
标识
DOI:10.1109/tgrs.2023.3329653
摘要

This paper presents an underwater acoustic target recognition method to reduce recognition errors in continuous recordings caused by variations in ship operating conditions. The proposed method comprises two-stages: the spectral feature classification and the supervised contrastive learning, and it is called as SFC-Sup as a result in this paper. In the first stage, a new spectral feature classification strategy is designed to choose appropriate feature sets for contrastive learning, based on which an instance discrimination pretext task is created by utilizing different spectral features to capture invariant features across segments under different operating conditions. In the second stage, a dynamic weighted loss function is introduced to guide the joint optimization process in the framework of contrastive learning. Different to existing methods which focus on improving the recognition accuracy by designing features for individual segments, the proposed two-stage method SFC-Sup considers consistent features across diverse segments, which is expected to improve recognition accuracy in a continuous recording. Experimental results demonstrate that in the presence of complex operating conditions, SFC-Sup exhibits superior stability and enhances recognition accuracy by 2.06% compared to state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
gepp完成签到 ,获得积分10
2秒前
2秒前
白路发布了新的文献求助10
3秒前
niaho完成签到,获得积分10
3秒前
3秒前
5秒前
奋斗土豆完成签到 ,获得积分10
5秒前
6秒前
王乐妍完成签到,获得积分10
6秒前
alna发布了新的文献求助10
6秒前
6秒前
领导范儿应助only采纳,获得10
6秒前
duan完成签到 ,获得积分10
7秒前
8秒前
双儿发布了新的文献求助10
8秒前
niaho发布了新的文献求助10
8秒前
大龙哥886完成签到,获得积分0
9秒前
酷炫的紫山完成签到,获得积分10
9秒前
852应助甜美的成败采纳,获得10
10秒前
忆修发布了新的文献求助30
11秒前
11秒前
婷婷完成签到,获得积分10
11秒前
12秒前
12秒前
Ou完成签到,获得积分10
12秒前
13秒前
sakiecon完成签到,获得积分10
13秒前
科研通AI6应助zw采纳,获得10
15秒前
15秒前
adc发布了新的文献求助10
16秒前
Sep发布了新的文献求助40
16秒前
17秒前
何不尽发布了新的文献求助10
17秒前
17秒前
牛牛完成签到,获得积分10
17秒前
李健的小迷弟应助珈砾采纳,获得30
18秒前
ssj发布了新的文献求助10
19秒前
jory应助仁爱的秋天采纳,获得10
20秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583054
求助须知:如何正确求助?哪些是违规求助? 4667003
关于积分的说明 14764826
捐赠科研通 4609018
什么是DOI,文献DOI怎么找? 2528962
邀请新用户注册赠送积分活动 1498259
关于科研通互助平台的介绍 1466910