An optimized post-surgery follow-up strategy for patients with esophageal cancer: a cohort study

医学 队列 外科 内科学
作者
Zihang Mai,Jiaxin Xie,Cathryn Leng,Xiuying Xie,Jing Wen,Hong Yang,Qianwen Liu,Jianhua Fu
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000000827
摘要

Background: After radical surgery, patients with esophageal cancer should undergo long-term surveillance of disease relapse. However, the optimal follow-up strategy remains to be explored. Method: A total of 4688 patients were recruited. Recursive partition analysis was applied to develop recurrence risk stratification for patients. The follow-up strategies of each stratification were developed based on monthly recurrence probability and validated by bootstrap validation and an external dataset. Markov decision-analytic model was constructed to evaluate the cost-effectiveness of the follow-up strategies. Results: Patients were stratified into four groups according to four pathological features. We applied random survival forest to calculate the monthly recurrence probability of each group. Based on the temporal distribution of recurrences, we further established surveillance strategies for four groups. The strategies were validated as optimal protocols by bootstrap resampling and another dataset. Markov decision-analytic analysis indicated that our recommended strategies outperformed the mainstream protocols from guidelines and were most cost-effective. Using less than 12 visits across the first 5 years on average, our follow-up strategies were more efficient than the NCCN recommended strategies (14 visits average). Our results also supported the computerized tomography from the neck to the upper abdomen as routine examination and PETCT of distant metastasis for some groups with high risks. Conclusion: Our study provided data-driven evidence of personalized and economic follow-up strategies for EC patients and shed light on follow-up optimization for other cancer types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Math123发布了新的文献求助10
1秒前
情怀应助张对对采纳,获得10
1秒前
意安发布了新的文献求助10
2秒前
3秒前
3秒前
Gjq完成签到 ,获得积分10
4秒前
5秒前
嗯呢发布了新的文献求助10
5秒前
6秒前
脑洞疼应助KKKkkkkk采纳,获得10
7秒前
上官若男应助揽星色采纳,获得10
7秒前
充电宝应助晶晶妹妹采纳,获得10
9秒前
三金发布了新的文献求助10
10秒前
小女完成签到,获得积分20
10秒前
礼帽发布了新的文献求助10
10秒前
xuhailong发布了新的文献求助10
11秒前
11秒前
顾矜应助月亮是甜的采纳,获得10
11秒前
慕青应助小柚子采纳,获得10
11秒前
ovo完成签到,获得积分10
11秒前
12秒前
13秒前
ZXB完成签到,获得积分10
17秒前
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
xuhailong完成签到,获得积分20
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得30
18秒前
ayayaya完成签到 ,获得积分10
18秒前
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
枫影应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得30
18秒前
KARRY应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
JJ田叶完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644