发光
材料科学
磷光
液晶
双层
聚合物
相(物质)
手性(物理)
结晶学
光电子学
有机化学
复合材料
光学
化学
膜
荧光
生物化学
物理
手征对称破缺
量子力学
Nambu–Jona Lasinio模型
夸克
作者
Mengdie Zhou,Jiafan Zhang,Yueyue Chen,Zhong Chen,Yongjie Yuan,Yongyang Gong,Hailiang Zhang
标识
DOI:10.1002/marc.202300449
摘要
Circularly polarized luminescence (CPL) materials with clustering-triggered emission (CTE) characteristic have gradually attracted attention for their unique photophysical properties. However, the majority of reported clusteroluminogens lack chirality and exhibit heterogeneity, making it challenging to achieve a well-defined helical structure necessary for efficient CPL with high dissymmetry factor (glum ). In this paper, chiral liquid crystals are constructed to obtain CTE-based CPL materials with high glum values. Side chain liquid crystal polymer PM6Chol bearing cholesterol clusteroluminogens are designed and synthesized. PM6Chol-coated film and PM6Chol thermal-treated film are also successfully prepared by different film-forming methods. Both the films inherit the CTE characteristic of cholesterol and show excitation wavelength-dependent luminescent behavior. However, the two polymer films exhibit different liquid crystal phase structures, with PM6Chol-coated film being a chiral bilayer smectic C phase and PM6Chol thermal-treated film being an achiral bilayer smectic A phase. Attributed to helical arrangement of cholesterol, PM6Chol-coated film emits efficient CPL with glum values up to 1.0 × 10-1 . For PM6Chol thermal-treated film, no CPL signal is detected due to the absence of helical structure. However, it shows obvious room-temperature phosphorescence with 2.0 s afterglow and 23.9 ms lifetime.
科研通智能强力驱动
Strongly Powered by AbleSci AI