Coarse-to-fine segmentation of individual street trees from side-view point clouds

点云 分割 树(集合论) 数据库扫描 人工智能 计算机科学 聚类分析 模式识别(心理学) 随机森林 市场细分 地理 数学 模糊聚类 业务 数学分析 树冠聚类算法 营销
作者
Qiujie Li,Yongtao Yu,Weizheng Li
出处
期刊:Urban Forestry & Urban Greening [Elsevier BV]
卷期号:89: 128097-128097
标识
DOI:10.1016/j.ufug.2023.128097
摘要

Segmenting individual street trees from a street side-view point cloud is the first and key step of obtaining a street tree inventory. Using the classification-segmentation framework for individual tree segmentation makes tree detection simple and accurate, but segmenting overlapping trees is still challenging. To more accurately segment overlapping trees, a coarse-to-fine method for segmenting individual street trees from a side-view point cloud is proposed in this paper. Following the classification-segmentation framework, the tree points are first detected from the side-view street point cloud by a pointwise classifier fused from 13 local geometric features and then trained using random forest (RF). Second, the tree proposals are obtained by density-based spatial clustering of applications with noise (DBSCAN) clustering and detection error filtering. Third, the overlapping tree proposals are recognized by trunk identification, and the single tree proposals are directly output as individual trees. Fourth, the overlapping trees are roughly divided into individual tree proposals through vertical planes. Finally, individual trees with optimized contours are obtained by iteratively using DBSCAN clustering and k-nearest neighbour (k-NN) classification. The side-view point cloud of a 290 m-long urban street containing 77 street trees is captured by a hand-held mobile ZEB Horizon laser scanner. The tree detection attained an F1 score of 0.9916 with a precision of 0.9989 and a recall of 0.9864. For individual tree segmentation, the F1 score was 0.9745 with a precision of 0.9672 and a recall of 0.9819. Compared to two current classification-segmentation methods, the overlapping tree segmentation F1 scores were increased by 0.0914 and 0.0617, respectively. The proposed method can be applied to tree parameter extraction, which is an important urban forest inventory task and is crucial for urban forest management. In our experiment, the root mean squared error (RMSE) of the trunk diameter at breast height (DBH) estimation was 0.8485 cm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只小羊发布了新的文献求助10
2秒前
4秒前
ding应助guojing采纳,获得10
4秒前
Dannyhsu完成签到,获得积分10
4秒前
甜甜的莞发布了新的文献求助10
4秒前
科研通AI5应助GGGirafe采纳,获得10
5秒前
科目三应助动听半雪采纳,获得10
7秒前
xiaowang应助熊猫侠采纳,获得10
7秒前
豪哥发布了新的文献求助10
11秒前
17秒前
17秒前
小马甲应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
20秒前
Rita应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
皮肤科应助科研通管家采纳,获得20
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
皮肤科应助科研通管家采纳,获得20
20秒前
皮肤科应助科研通管家采纳,获得20
20秒前
20秒前
华仔应助科研通管家采纳,获得10
20秒前
20秒前
t通应助科研通管家采纳,获得10
20秒前
anitachiu1104发布了新的文献求助10
23秒前
24秒前
Apricot完成签到 ,获得积分10
26秒前
万能图书馆应助魔幻安筠采纳,获得10
26秒前
SciGPT应助许许采纳,获得10
27秒前
27秒前
GGGirafe发布了新的文献求助10
28秒前
guojing发布了新的文献求助10
32秒前
呆萌凤完成签到 ,获得积分10
34秒前
34秒前
36秒前
36秒前
GGGirafe完成签到,获得积分10
38秒前
阳光总在风雨后完成签到,获得积分10
39秒前
许许完成签到,获得积分20
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322546
关于积分的说明 10210579
捐赠科研通 3037903
什么是DOI,文献DOI怎么找? 1666952
邀请新用户注册赠送积分活动 797871
科研通“疑难数据库(出版商)”最低求助积分说明 758059