Hierarchically Contrastive Hard Sample Mining for Graph Self-Supervised Pretraining

计算机科学 判别式 人工智能 样品(材料) 图形 机器学习 数据挖掘 模式识别(心理学) 自然语言处理 理论计算机科学 化学 色谱法
作者
Wenxuan Tu,Sihang Zhou,Xinwang Liu,Chunpeng Ge,Zhiping Cai,Yue Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:9
标识
DOI:10.1109/tnnls.2023.3297607
摘要

Contrastive learning has recently emerged as a powerful technique for graph self-supervised pretraining (GSP). By maximizing the mutual information (MI) between a positive sample pair, the network is forced to extract discriminative information from graphs to generate high-quality sample representations. However, we observe that, in the process of MI maximization (Infomax), the existing contrastive GSP algorithms suffer from at least one of the following problems: 1) treat all samples equally during optimization and 2) fall into a single contrasting pattern within the graph. Consequently, the vast number of well-categorized samples overwhelms the representation learning process, and limited information is accumulated, thus deteriorating the learning capability of the network. To solve these issues, in this article, by fusing the information from different views and conducting hard sample mining in a hierarchically contrastive manner, we propose a novel GSP algorithm called hierarchically contrastive hard sample mining (HCHSM). The hierarchical property of this algorithm is manifested in two aspects. First, according to the results of multilevel MI estimation in different views, the MI-based hard sample selection (MHSS) module keeps filtering the easy nodes and drives the network to focus more on hard nodes. Second, to collect more comprehensive information for hard sample learning, we introduce a hierarchically contrastive scheme to sequentially force the learned node representations to involve multilevel intrinsic graph features. In this way, as the contrastive granularity goes finer, the complementary information from different levels can be uniformly encoded to boost the discrimination of hard samples and enhance the quality of the learned graph embedding. Extensive experiments on seven benchmark datasets indicate that the HCHSM performs better than other competitors on node classification and node clustering tasks. The source code of HCHSM is available at https://github.com/WxTu/HCHSM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvhuiqi发布了新的文献求助10
刚刚
彭于晏应助田乐天采纳,获得10
1秒前
Buduan发布了新的文献求助10
1秒前
阿喵完成签到,获得积分10
1秒前
robotJ完成签到,获得积分10
2秒前
2秒前
6秒前
橘子汽水完成签到 ,获得积分10
6秒前
7秒前
7秒前
ZYSNNNN发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
orixero应助Zayn采纳,获得10
10秒前
薰硝壤应助小狗同志006采纳,获得10
10秒前
Z赵完成签到 ,获得积分10
11秒前
gyd完成签到,获得积分10
11秒前
Daisypharma发布了新的文献求助30
12秒前
天真的半莲完成签到,获得积分20
12秒前
学术通zzz发布了新的文献求助10
15秒前
烟花应助淡淡菠萝采纳,获得10
15秒前
阿雪发布了新的文献求助10
16秒前
17秒前
小怪兽完成签到,获得积分10
17秒前
19秒前
20秒前
wang发布了新的文献求助10
20秒前
20秒前
21秒前
lvhuiqi完成签到,获得积分10
21秒前
山野完成签到 ,获得积分10
21秒前
22秒前
李健的小迷弟应助施小雨采纳,获得10
22秒前
猪猪包发布了新的文献求助10
23秒前
24秒前
Hello应助成就猫咪采纳,获得10
24秒前
淡淡菠萝发布了新的文献求助10
24秒前
25秒前
兔兔发布了新的文献求助30
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140718
求助须知:如何正确求助?哪些是违规求助? 2791628
关于积分的说明 7799729
捐赠科研通 2447921
什么是DOI,文献DOI怎么找? 1302210
科研通“疑难数据库(出版商)”最低求助积分说明 626473
版权声明 601194