Hierarchically Contrastive Hard Sample Mining for Graph Self-Supervised Pretraining

计算机科学 判别式 人工智能 样品(材料) 图形 机器学习 数据挖掘 模式识别(心理学) 自然语言处理 理论计算机科学 色谱法 化学
作者
Wenxuan Tu,Sihang Zhou,Xinwang Liu,Chunpeng Ge,Zhiping Cai,Yue Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:9
标识
DOI:10.1109/tnnls.2023.3297607
摘要

Contrastive learning has recently emerged as a powerful technique for graph self-supervised pretraining (GSP). By maximizing the mutual information (MI) between a positive sample pair, the network is forced to extract discriminative information from graphs to generate high-quality sample representations. However, we observe that, in the process of MI maximization (Infomax), the existing contrastive GSP algorithms suffer from at least one of the following problems: 1) treat all samples equally during optimization and 2) fall into a single contrasting pattern within the graph. Consequently, the vast number of well-categorized samples overwhelms the representation learning process, and limited information is accumulated, thus deteriorating the learning capability of the network. To solve these issues, in this article, by fusing the information from different views and conducting hard sample mining in a hierarchically contrastive manner, we propose a novel GSP algorithm called hierarchically contrastive hard sample mining (HCHSM). The hierarchical property of this algorithm is manifested in two aspects. First, according to the results of multilevel MI estimation in different views, the MI-based hard sample selection (MHSS) module keeps filtering the easy nodes and drives the network to focus more on hard nodes. Second, to collect more comprehensive information for hard sample learning, we introduce a hierarchically contrastive scheme to sequentially force the learned node representations to involve multilevel intrinsic graph features. In this way, as the contrastive granularity goes finer, the complementary information from different levels can be uniformly encoded to boost the discrimination of hard samples and enhance the quality of the learned graph embedding. Extensive experiments on seven benchmark datasets indicate that the HCHSM performs better than other competitors on node classification and node clustering tasks. The source code of HCHSM is available at https://github.com/WxTu/HCHSM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Itachi12138完成签到,获得积分10
刚刚
小白想吃面包完成签到,获得积分10
刚刚
刚刚
刚刚
暴富发布了新的文献求助10
1秒前
妮妮发布了新的文献求助20
1秒前
SIC小旋风发布了新的文献求助10
2秒前
夜白完成签到,获得积分0
2秒前
汉堡包应助苏满天采纳,获得10
2秒前
2秒前
2秒前
小二郎应助GanGanGanGan采纳,获得10
2秒前
xiaoxiaoliang发布了新的文献求助10
3秒前
3秒前
SASA完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
crescendo完成签到,获得积分10
4秒前
科研通AI2S应助无知小白采纳,获得10
4秒前
CodeCraft应助美合采纳,获得10
4秒前
shuangyanli发布了新的文献求助10
4秒前
柔弱的映阳完成签到,获得积分20
5秒前
5秒前
5秒前
FBQZDJG2122完成签到,获得积分10
5秒前
可ke完成签到 ,获得积分10
5秒前
5秒前
麦乐迪完成签到 ,获得积分10
5秒前
5秒前
zz发布了新的文献求助10
5秒前
11完成签到,获得积分20
6秒前
kuaikuai完成签到,获得积分10
6秒前
Annie完成签到 ,获得积分10
6秒前
科文完成签到,获得积分10
7秒前
白菜帮子发布了新的文献求助10
7秒前
Lori关注了科研通微信公众号
7秒前
邝边边完成签到,获得积分10
8秒前
茶色玻璃发布了新的文献求助10
8秒前
行道吉安发布了新的文献求助30
8秒前
9秒前
夏天发布了新的文献求助10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666840
求助须知:如何正确求助?哪些是违规求助? 3225706
关于积分的说明 9764854
捐赠科研通 2935572
什么是DOI,文献DOI怎么找? 1607763
邀请新用户注册赠送积分活动 759353
科研通“疑难数据库(出版商)”最低求助积分说明 735287